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Abstract
We derive a new method to quantify the impact of correlated firing on the
information transmitted by neuronal populations. This new method considers,
in an exact way, the effects of high order spike train statistics, with no
approximation involved, and it generalizes our previous work that was valid
for short time windows and small populations. The new technique permits
one to quantify the information transmitted if each cell were to convey fully
independent information separately from the information available in the
presence of synergy–redundancy effects. Synergy–redundancy effects are
shown to arise from three possible contributions: a redundant contribution due
to similarities in the mean response profiles of different cells; a synergistic
stimulus-dependent correlational contribution quantifying the information
content of changes of correlations with stimulus, and a stimulus-independent
correlational contribution term that reflects interactions between the distribution
of rates of individual cells and the average level of cross-correlation. We apply
the new method to simultaneously recorded data from somatosensory and visual
cortices. We demonstrate that it constitutes a reliable tool to determine the role
of cross-correlated activity in stimulus coding even when high firing rate data
(such as multi-unit recordings) are considered.

1. Introduction

The presence of correlations between the timing of spikes emitted by populations of neurons is
a common experimental finding in nervous systems (Gawne and Richmond 1993, de Oliveira
4 Author to whom any correspondence should be addressed.
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et al 1997, Lebedev et al 2000, Mastronarde 1983). However, whether such correlations
really contribute to encoding of sensory stimuli is highly debated. Evidence is controversial
on whether stimulus modulations of correlation of firing among small groups of neurons
are indeed coding for stimulus identity (Gray et al 1989, deCharms and Merzenich 1996,
de Oliveira et al 1997, Nirenberg and Latham 1998, Villa et al 1999, Lamme and Spekreijse
1999, Shadlen and Movshon 1999, Oram et al 2001). In our view, some progress in resolving
this controversy and in understanding the role of correlations in stimulus coding can be made
by addressing questions such as the following: What is the total impact of correlations on
information transmission? Does the population use correlation changes to convey information
that is not available in firing rate variations of individual cells? Is the information conveyed
by the population more than that conveyed by the single cells considered individually? Is
correlation a reliable enough mechanism to support robust stimulus discrimination on the
basis of a single observation of a neuronal population response?

It is clear that a direct application of information theory (Cover and Thomas 1991) to
the analysis of simultaneously recorded neuronal responses can provide quantitative answers
to some of the above questions (Nirenberg et al 2001, Petersen et al 2001, Reich et al
2001). However, information theoretic approaches are useful in this respect only if they
allow a precise quantification of the modalities with which correlations contribute to neuronal
information transmission, rather than just a quantification of the total information transmitted
by the population. We have previously developed an information theoretic formalism (the
series expansion formalism; see Panzeri et al (1999), Panzeri and Schultz (2001) and also
DeWeese (1996)) that permits one to quantify separately the information available if each cell
were to convey independent information from the deviations from independent information
transmission (i.e. synergy–redundancy effects; we refer to synergy when there is more
information in the simultaneous observation of the population responses than in the sum of
information conveyed by each cell individually, and we refer to redundancy when the joint
neuronal activity conveys less information than the sum of information conveyed by individual
cells). These effects were shown to arise from three possible contributions:

(a) a redundancy contribution due to similarities in the mean response profiles of different
cells;

(b) either a redundant or a synergistic stimulus independent correlation term that reflects the
presence of interactions between the distribution of firing rates of individual cells and the
average level of cross-correlated activity;

(c) a synergistic stimulus-dependent correlational contribution that precisely quantified
whether stimulus modulations of cross-correlation are used to carry information not
present in the firing rates of individual cells alone.

The series expansion approach was based on the assumption that information is transmitted
in post-stimulus time windows that are short compared to typical interspike-intervals, so that
the average number of emitted spikes per stimulus presentation is low. One important practical
advantage of this method is that, since in this limit only individual-cell mean firing rates and
pair-wise correlations between spikes are important, its sampling properties are extremely good
compared to a brute force evaluation of information directly from the full response probabilities
(Schultz and Panzeri 2001). However, the obvious limitations of the series expansion are that
it cannot be applied to long post-stimulus windows or large populations, and that it does not
quantify the effect of higher order interactions between spikes or between large cell assemblies.
This paper presents an investigation of how to overcome the limitations of the series expansion.
We derive a new approach that breaks down the mutual information into its coding components
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in the exact case, without stopping at a second-order approximation to describe the spike train
statistics.

The paper is organized as follows. In section 2 the definition of mutual information is
given. In section 3, we give and discuss the main result of this paper: the mathematical
expressions for the information breakdown equations. In section 4, we illustrate the meaning
of the terms of the information breakdown by applying it to simulated data. In section 5, we
discuss the relation of our work to the recent paper of Nirenberg et al (2001). In section 6,
we introduce (and test with computer simulations) corrections for finite sampling for each of
the information components. In section 7 we apply the information breakdown to real data
from somatosensory and visual cortices and discuss how the analysis can be applied on low- or
high-firing rate data. Finally, in section 8 we discuss the consequences of our results.

2. The information carried by neuronal population responses

In this section we give the main definitions of information transmitted by the neuronal
population activity about the stimuli. We consider a time period of duration T , associated
with a dynamic or static sensory stimulus, during which the activity of C cells is observed.
The neuronal population response to the stimulus in this post-stimulus time window is denoted
by a vector r, each element r1, . . . , rC of the vector describing the response of an individual
cell. The response of each cell can be described in a number of ways depending on the
experimental questions to be addressed. For example, the experimenter might be interested
in a spike count code. In this case rc would simply be the spike count of cell c measured in
the post-stimulus time window [0, T ] on a given trial. Or else, the experimenter might wish
to investigate a spike timing code. In this case the response rc would be a sequence of spike
arrival times {tc

i }, tc
i denoting the time of the i th spike emitted by the cth neuron in a given

trial. Although in the applications presented in this paper we focus only on spike count codes,
the equations we derive will be valid for any choice of neuronal code r, including spike timing
codes.

For a given choice of code, following Shannon (1948), we can write down the mutual
information transmitted by the population response about the whole set of stimuli as

I (R;S) =
〈∑
r∈R

P(r|s) log2
P(r|s)
P(r)

〉
s

. (1)

Mutual information quantifies how well an ideal observer of neuronal responses can
discriminate between all the different stimuli, based on a single trial. In equation (1) the
summation is over all possible population responses. Each different stimulus is denoted as s.
The angular brackets indicate the average over different stimuli, 〈A(s)〉s ≡ ∑

s∈S P(s)A(s).
P(r|s) is the probability of observing a particular response r conditional to stimulus s, and
P(r) = 〈P(r|s)〉s is its average across all stimulus presentations. The probability P(r|s) is
determined experimentally by repeating each stimulus in exactly the same way on many trials,
while recording the neuronal responses.

3. The exact breakdown of information into its coding mechanisms

The Shannon’s mutual information, as expressed in equation (1), quantifies the total
information transmitted by the neuronal population activity. However, it tells us nothing about
the specific contribution of cross-neuronal correlations to the total transmitted information. In
addition, it does not tell us directly whether cross-correlations make the code redundant or
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synergistic. In this paper we perform and present the mathematical work that permits one to
quantify precisely the impact of cross-cell correlation on information transmission.

The first step needed in order to quantify the importance of cross-correlations is the
construction of the stimulus-conditional statistically independent response probability, in
addition to the simultaneous joint response probability P(r|s). By definition, two stochastic
variables are statistically independent if their joint response probabilities equal the product
of the individual probabilities5. Hence, the probability of independent population responses
that ignores cross-cell correlations can be obtained by taking the product of the probability
distributions of individual cells:

Pind(r|s) =
C∏

c=1

P(rc|s). (2)

The stimulus-unconditional independent response probability is computed as follows:

Pind(r) = 〈Pind(r|s)〉s . (3)

The independent response probability Pind(r|s) provides, for each response r, a predictor
that can be used to test how much the real response probability P(r|s) deviates from the null
hypothesis of no cross-correlation (i.e. P(·) = Pind(·)). In this sense, Pind(r|s) is conceptually
similar to shuffle predictors used to test and quantify correlation in cross-correlogram (CCG)
or joint-Peri-stimulus-time-histogram (JPSTH) analyses (Aertsen et al 1989). However, the
mutual information in equation (1) depends on the full response probability distributions, and
not only on a second-order quantification of neuronal statistics. Hence, to exactly describe the
impact of correlation on information, it is necessary to define a response-related correlation
measure that goes beyond second-order correlation and that takes naturally into account all the
higher order statistics of the joint response probability distribution. In analogy with classic
CCG analyses, the independent response probability can be used to quantify the strength of
correlation between cells during a response r. A natural definition for the normalized cross-
correlation strength of population response r is the following:

γ (r|s) =



P(r|s)
Pind(r|s) − 1 if Pind(r|s) �= 0

0 if Pind(r|s) = 0
(4)

where γ (r|s) quantifies how much the probability that neurons emit a response r is higher than
that expected in the uncorrelated case, normalized to the probability of event r expected in the
uncorrelated case. Positive values of this coefficient mean that the individual cell responses
r1, . . . , rC , composing the population response r, happen together during the same trial more
frequently than if there was no cross-cell correlation. This correlation coefficient goes beyond
second-order (pairwise) correlations and it takes into account all possible interaction orders
between all neurons in the population. It is worth stressing that the correlation strengths γ (r|s)
introduced above are response-dependent quantities. The γ (·) values provide a complete
description of the deviations of neuronal response from independence because there is one
γ (r|s) for each possible population response r. Second-order quantifications of neuronal
correlation, such as spike count Pearson correlation coefficient (Zohary et al 1994) or JPSTHs
(Aertsen et al 1989), provide, instead, an average across trials of pair-wise only correlations. It
is apparent that in some cases the second-order description of correlation might be incomplete,

5 As will be shown below, statistical independence of responses of a population does not necessarily imply that
the population conveys information independently: there could be redundancy due to similarities in the response
profiles of single cells. For this reason, in this paper we will make a distinction between statistical independence and
informational independence.
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for example, in the presence of some high order interactions between large groups of spikes
or cells.

A final remark that should be made is that, since γ (r|s) are response-dependentquantities,
they have to satisfy (for each stimulus s) a zero-sum constraint:∑

r

Pind(r|s)γ (r|s) = 0. (5)

This constraint stems directly from the normalization to one of response probabilities. We
also need to introduce a coefficient that quantifies how similar the stimulus modulation of
responses of individual cells is. This parameter is important for describing population coding:
if all cells have similar stimulus selectivity, it is likely that the population code is redundant.
To quantify the similarities of individual cell responses across stimuli, we hence introduce a
‘signal similarity’ coefficient6. In a way analogous to γ (·), the signal similarity coefficient is
defined as follows:

ν(r) =




Pind(r)∏
c P(rc)

− 1 if
(∏

c P(rc)
) �= 0

0 if
(∏

c P(rc)
) = 0.

(6)

This coefficient is different from zero if ‘signals’ coming from individual neurons are either
positively correlated (i.e. similar) or negatively correlated. It does depend only on response
probabilities of individual cells and not on within-trial cross-correlation. It quantifies how
similar across stimuli the responses probabilities of the individual cells that form the population
are. We will show, in what follows, that this quantity is important to describe the information
transmitted by the population. We note that the signal similarity coefficient is also response
dependent, and it hence satisfies a normalization condition similar to equation (5), as follows:∑

r

(∏
c

P(rc)

)
ν(r) = 0. (7)

By rewriting the total information in terms of these quantities we were able to write the total
information in components, each reflecting the contribution of a different coding mechanism:

I (R;S) = Ilin + Isig−sim + Icor−ind + Icor−dep . (8)

The meaning and mathematical expression of each of the components is described in the
following. It is interesting to note that, as explained in what follows, those components have
the same meaning as the corresponding components of the previously derived series expansion
quantities (Panzeri et al 1999, Panzeri and Schultz 2001), but they are exact, and not an
approximation of fixed order.

In the following we express the information components in a form that makes the
understanding of the coding mechanisms and the comparison with the series expansion
approximation simpler. However, we derived an equivalent and equally useful mathematical
expression for these quantities as a difference of entropies and entropy-like quantities. These
expressions are convenient for numerical implementation of the analysis, and are reported
in appendix A. It is important to note that the sum of the components of this information
breakdown exactly equals the total mutual information only if each individual term of the
information breakdown is summed over all possible population responses. (see appendix A).
In the series expansion approach, it was instead possible to truncate the expansion at a
certain order.

6 We chose to name this coefficient ‘signal similarity’ to be consistent with previous studies (Gawne and Richmond
1993, Panzeri et al 1999).
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3.1. The linear term—information transmitted by independent cells

The first term of the information breakdown Ilin is the information obtained if each cell were
to convey independent information. In this case there would be no redundancy or synergy and
the total information transmitted by the population would be a linear sum of the information
conveyed by each individual cell:

Ilin =
∑

c

∑
rc

〈
P(rc |s) log2

P(rc|s)
P(rc)

〉
s

. (9)

Deviations from independent information transmission (i.e. synergy or redundancy effects) are
expressed by the other three terms, considered in what follows.

3.2. Signal-similarity term

If there is any redundancy between cells, equation (9) can overestimate the information.
Redundancy can be present even in the absence of cross-correlation if there are similarities
in the distribution across stimuli of stimulus-conditional response probabilities of individual
cells. The total impact of signal similarities on information transmission is a logarithmic
function of the signal correlation coefficient, equation (6), and it is expressed as follows:

Isig−sim = 1

ln 2

∑
r

(∏
c

P(rc)

){
ν(r) + (1 + ν(r)) ln

1

1 + ν(r)

}
. (10)

It is easy to see that signal similarity cannot lead to synergy: equation (10) is always less than
or equal to zero, since f (x) = x − (1 + x) ln(1 + x) has a global maximum at f (0) = 0. It is
equal to zero if and only if the signal similarity is precisely zero.

The first two terms of the information expansion, Ilin and Isig−sim , depend only on the
response properties of each cell evaluated individually, and not on cross-cell correlation. If
the population responses are statistically independent (P(·) = Pind(·), i.e. γ (·) = 0), these are
the only non-zero contributions to the information breakdown. The sum of Ilin and Isig−sim

quantifies how much information can be obtained from the neurons evaluated individually,
without reference to the simultaneous activity of other neurons.

The next two terms in the information breakdown, given in what follows, are the
correlational terms. They depend also on the correlation strength γ (·) of simultaneous
response. They can be non-zero only if the correlation strength γ (r|s) is different from
zero for some response r or stimulus s. Hence they express any further effects that cross-cell
correlations might have beyond that accounted for by individual cell properties. The sum of the
two correlational terms Icor−ind and Icor−dep quantifies the amount of information genuinely
available from the correlated activity of the whole population.

3.3. Stimulus-independent correlational component

Even if not stimulus-modulated, cross-correlations can still affect the neuronal code through an
interaction between cross-cell correlation and signal similarity (Abbott and Dayan 1999, Oram
et al 1998). The effect of stimulus-independent correlations to information transmission is

Icor−ind =
∑

r

〈Pind(r|s)γ (r|s)〉s log2
1

1 + ν(r)
. (11)

The first multiplicative factor reflects the effect of cross correlation, but these correlations
are averaged across stimuli (weighted proportional to the probability of each response). The
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Figure 1. The effect of stimulus-independent correlations on information encoding. Each panel
sketches joint distributions of responses of two hypothetical cells to three different stimuli. Each
ellipse indicates the set of responses elicited by a given stimulus. In the upper panels, there is positive
signal similarity (i.e. individual cell responses to each stimulus are positive correlated) whereas
in the lower panels there is negative signal similarity. The sign of cross-correlations between
the joint responses differs across columns of this figure. In general, if cross-cell correlation and
signal similarities have opposite signs, the effect of stimulus-independent correlations increases the
information about stimuli, because the joint response probabilities to each stimulus become more
separated. If instead cross-cell correlation and signal similarities have the same sign, stimuli are less
discriminable than in the other case. Redrawn from Oram et al (1998) and Petersen et al (2001).

logarithmic term depends instead on signal similarity. For a given response r, the stimulus-
independent correlational component is positive (synergistic) when signal similarity and cross-
correlation have the opposite sign, and negative (redundant) otherwise (see figure 1 for an
intuitive explanation). It is important to stress that, because of the zero-sum constraint in
equations (5) and (7), the response-dependent coefficients γ and ν will change sign for
different responses r. Because of this, unlike for the other information components, it is
not straightforward to understand whether the net effect of summing over all responses r will
result in a positive or a negative Icor−ind . The series expansion formalism (Panzeri et al 1999)
tells us that, if the response time window is short, the sign of Icor−ind will chiefly depend on
that of second-order correlations. However, for long time windows, high order effects might
be dominant in some cases.

3.4. Stimulus-dependent correlational component

Finally, the stimulus-dependent correlational component is

Icor−dep =
∑

r

〈
Pind(r|s)(1 + γ (r|s)) log2

〈Pind (r|s′)〉s ′(1 + γ (r|s))
〈Pind(r|s′)(1 + γ (r|s′))〉s ′

〉
s

. (12)

It can be proved by means of basic information-theory inequalities that this term is non-
negative, and it is zero if and only if, for any given response r, the correlation strength γ (r|s)
is stimulus independent. Therefore this term measures how well stimulus identity is ‘tagged’
in differences in trial-to-trial spike correlations across the stimuli.
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It is interesting to note that the exact decomposition of neuronal population information
into coding components is exactly analogous to the one previously performed in the short-time
limit and expressing only up to pair-wise correlations. The exact breakdown formulae can
be simply derived from the second-order series expansion ones by appropriately replacing the
second-orderγ and ν (defined in Panzeri and Schultz (2001)) with the exact ones, equations (4)
and (6), and by replacing the instantaneous rates (which, in the short-time bin size limit are
the probabilities of a spike from a cell in a time considered independently of other bins and
cells) with the single cell response probabilities (i.e. the probability of each cell response
considered independently of the other cells). Despite this analogy, there is, however, one
important difference between the exact breakdown and the series expansion equations. In
the exact case, the sum in the equation extends to all the possible population responses. In
contrast, only first-and second-order moments of the response probability distributions enter
the approximated series expansion equations, and the approximation can be made better and
better by inserting successively higher terms.

Finally, we note that we verified that, when taking series expansion approximation of each
individual term of the exact information breakdown, we correctly retrieved the expression of
the corresponding series expansion component. This is an important consistency check and it
means that, if the time window considered is short with respect to typical inter-spike intervals,
the exact information breakdown and the series expansion will give similar numerical results.
An explicit example of this equivalence is given in figure 5 by means of an application to real
neuronal pairs with low-firing rate.

4. Application of the exact information breakdown to simulated neuronal pairs

In order to illustrate and check our new analysis method, we extensively applied the method
to simulated responses of neuronal pairs reflecting different ways of encoding information
through correlations. In this section we present some of these applications on simulated
data with the aim of facilitating the understanding of the various terms of the information
breakdown. In the following examples we considered pairs of cells and we considered the
information carried by a joint spike count code, because the following real data examples
also computed information carried by spike counts. However, it is important to stress again
that our formalism is general and can be applied, as it is, to spike timing population codes as
well. The information content of each component was computed on the basis of 256 simulated
trials per stimulus, and corrections for finite sampling (described in the next section) were
applied.

4.1. Application to Poisson spike trains

We started by applying the method to simulated uncorrelated data. In this case all the
correlational components are expected to carry zero information. We simulated the spike trains
of two cells responding to two different stimuli. In each trial, we generated, independently
for each cell, 1 second of simulated data according to a stationary Poisson process with mean
rates reported in figure 2(a) (left panel).

When applying the information breakdown, we found that both correlational components
conveyed zero information. This correctly reflects the fact that the two simulated neurons were
uncorrelated (for illustration, CCGs are plotted in the central panel of figure 2(a)). Since the
mean response profile of the two neurons was similar across the stimulus set, we expected to
find some negative signal-similarity contribution leading to redundant information. Indeed, we
found that, although the dominant information term in this case was the linear one,equation (9),
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Figure 2. Components of the information breakdown. The meaning of the information components
is illustrated by applying the exact information breakdown to simulated neuronal pairs responding
to two stimuli and reflecting different ways of encoding information through correlations. Data
were generated as follows. We first created, independently for each cell, spikes from a Poisson
process. We then generated spikes from a third Poisson process, and these spikes were then added
to both cells in order to create cross-correlation. In order to avoid synchronization with infinite
time precision, the shared spike times added to the second cell were shifted together in time by a
random amount chosen anew for each trial from a zero-mean Gaussian distribution with standard
deviation of 5 ms. In all cases, a joint spike count code over a 1 s long window was considered.
The left panels plot the mean firing rate of the two cells; the central panels plot the CCG (computed
analytically from knowledge of the simulated processes); the right panels report the values of
each information component. The terms Ilin , Isig−sim , Icor−ind and Icor−dep refer to the various
components of the information breakdown as described in section 3. (a) Uncorrelated spike trains;
a Poisson process is used for each cell and no shared spikes are added. (b) Correlated data with
weak stimulus modulation of correlation; in this case the ratio of independent versus shared spikes
was approximately the same for both stimuli and hence the correlation strength γ (·) was only
weakly stimulus modulated. The simulation parameters were as follows. For both cells, the mean
rate of the independently generated spikes was 10 Hz for the first stimulus and 8 Hz for the second
stimulus. The mean rate of the shared spikes was 10 Hz to the first stimulus and 8 Hz to the second
one. (c) Correlated data with strong stimulus modulation of correlation; in this case the ratio of
independent versus shared spikes was much higher for the first stimulus than for the second. As a
consequence, the γ (·) coefficients were stimulus dependent. The data were generated as follows.
For both cells, the mean rate of the independently generated spikes was 10 Hz for the first stimulus
and 1 Hz for the second stimulus. The mean rate of the shared spikes was 10 Hz to the first stimulus
and 15 Hz to the second one. (d) Correlated data with strong stimulus modulation of correlation
and no rate modulation; the ratio of independent versus shared spikes was much higher for the first
stimulus than for the second, but the mean firing rate of each cell did not change across cell or
stimulus. For both cells, the mean rate of the independently generated spikes was 9 Hz for the first
stimulus and 1 Hz for the second stimulus. The mean rate of the shared spikes was 9 Hz to the first
stimulus and 17 Hz to the second one.



44 G Pola et al

there was a negative contribution from the signal-similarity information term. The signal
similarity redundancy was relatively small, as predicted by equations (6) and (10).

4.2. Application to correlated data

We then applied the method to correlated data and checked whether it is able to disambiguate
correctly between the two possible stimulus-dependent and stimulus-independentcorrelational
mechanisms.

For each simulated stimulus, we generated correlated neuronal response pairs according
to the following simple procedure (Brody 1999). We first created, independently for each cell,
spikes from a Poisson process with a certain mean rate (in principle different for each stimulus
and cell). We then generated spikes from a third Poisson process (characterized by a mean
rate in general different from that of the first two simulated processes). The spikes generated
from this third process were then added to both cells, and this led to cross-correlation.

The amount of correlation was modulated across stimuli by varying the number of
simulated shared spikes with respect to the spikes simulated independently for each cell.

4.2.1. The case of weak stimulus modulation of correlation. We first generated correlated
data where the fraction of correlated spikes was held approximately constant across stimuli.
This is reported in figure 2(b). For illustration, CCGs to both stimuli are plotted in the central
panel of figure 2(b).

The overall mean responses of the two simulated neurons were similar across stimuli
(figure 2(b); left panel). As a result of the procedure used in the simulation, stimulus
modulations of correlation density were very small; see the CCGs plotted in the central panel
of figure 2(b). The information analysis was able to describe well the type of correlational
encoding used by the simulated data. We found that the stimulus-independent correlational
component was of appreciable size. The stimulus-independent correlational component was
negative because it originated from correlated spike trains from neurons with similar tuning
to stimuli (see figure 1 and equation (11)). The stimulus-dependent correlational component
was very small, correctly reflecting the nature of the simulated data.

4.2.2. The case of strong stimulus modulation of correlation. We then generated correlated
data with a fraction of shared spikes that was strongly stimulus modulated (figure 2(c); see
CCGs in the central panel). When performing the information analysis, we found that the values
of Ilin , Isig−sim were similar to those of the previous simulation. This is consistent because
the mean firing rates were equal to the previous case. The stimulus-independent correlational
component Icor−ind was again negative, reflecting an average positive cross-cell correlation
strength, and single cell responses presenting similarities across stimuli. The difference with
the previous simulation is that now the stimulus-dependent correlational component conveys
a large amount of information (61% of the total mutual information).

4.2.3. The case of purely correlational information (no rate modulation). Finally, we wanted
to show that the two information components Ilin and Isig−sim do not incorrectly contain
some information that is conveyed by the cross-cell correlated activity. To clarify this point,
we applied the information breakdown to simulated data which presented no mean response
variation across stimuli or cell, but that modulated the cross-correlation strength to different
stimuli (figure 2(d)). Results of the information analysis are reported in figure 2(d). In this case
only the stimulus-dependent correlational component conveys information. Hence, also in this
case the simulated coding mechanism is correctly revealed by the information breakdown.
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In summary, for all simulated cases the information breakdown method was able to
correctly describe the nature of the underlying cross-correlation coding mechanism.

5. Quantifying the information that can only be decoded considering the stimulus
variations of correlated firing

Equation (1) quantifies the information transmitted (or encoded) by the neuronal responses,
and it does not specify any form or model of the downstream neuronal decoder that is going
to read the output of the considered population. The data-processing inequality (Cover and
Thomas 1991) shows that the information that any decoder can extract from the neuronal
responses is less than or equal to that encoded. Thus equation (1) provides an upper bound
that can be used to test the accuracy of any decoding model.

An interesting question is whether a decoder that ignores the response correlations and
uses an uncorrelated probability model to decode the spike train would be able to extract all the
information present in the population responses (Wu et al 2001). A new and very interesting
way to quantify the effect of using the no-correlation hypothesis in interpreting correlated
data has been proposed by Nirenberg et al (2001). The idea is as follows. Information
about a stimulus can be thought of as the average number of binary digits (or yes/no questions)
necessary to describe the stimulus minus the average number of binary digits needed to identify
the stimulus given the observation of a response (assuming optimal coding strategy). When
treating the cells as independent, we use the approximate probability Pind (r|s) instead of the
true one, P(r|s). The incorrect statement provided by the approximated model increases the
complexity of the description of the stimulus given the response (Cover and Thomas 1991).
The idea of Nirenberg et al (2001) is to measure the information loss due to the use of the
uncorrelated model as the average increase in the length of the binary digit code needed to
characterize the stimulus given the response, averaged over responses (Nirenberg et al 2001,
Cover and Thomas 1991):

�I ≡ D(P(s|r) ‖Pind (s|r)) ≡
∑

r

P(r)
∑

s

P(s|r) log2
P(s|r)

Pind(s|r)
(13)

where D is conditional relative entropy (see Cover and Thomas 1991, p 22, equation (2.61)).
In the context of this work on the role of correlation in encoding, we were interested in
investigating the relationship between �I , the information lost by the uncorrelated ‘yes/no’
decoder, and the correlational components of the information breakdown. By using the Bayes
rule and performing some algebra, one can verify that �I exactly equals the information
carried by the stimulus modulations of correlation, equation (12). This means that �I ,
the information neglected by the ‘yes/no’ decoder based on the uncorrelated model, is the
information specifically carried by the stimulus-modulation of the correlation strength.

6. Sampling properties and bias corrections

In practice, the information components must be estimated from experimental probabilities
obtained from a limited number Ns of repeated presentations of each stimulus s. This leads to a
systematic error (or bias) in the estimate of the mutual information and of its components; the
size of the bias being inversely related to the number of trials (Panzeri and Treves 1996).
It is possible to largely alleviate this problem by computing analytic expressions for the
limited sampling biases and subtracting it from the raw estimates obtained directly from the
experimental probabilities. These corrections have been computed previously only for the
total information (Panzeri and Treves 1996, Victor 2000).
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In this section we focus on how to compute effective bias corrections also for the
individual components. This step is necessary to obtain reliable estimates of the information
carried by each component in practical applications of spike train analysis. We will present
some analytical evaluation of the bias of each component (with more details reported in
appendix B). We will also use computer simulations to evaluate the accuracy of the bias
correction procedures, and to illustrate rules of thumb that guide the evaluation of the amount
of trials necessary to ensure that each component is computed with reasonable accuracy. For
validation of the method, we simulated both correlated and uncorrelated neuronal pairs, and we
studied the precision of the information estimates as a function of the number of simulated trials,
both before and after applying the bias corrections derived here. The results for uncorrelated
data (generated as in section 4.1) are reported in figure 3, and the results for correlated data,
simulated as in section 4.2.1), are plotted in figure 4. We considered the information carried by
the joint spike count of the simulated neuronal pairs in a 1 s long window. For the information
calculation, we compressed the number of possible responses by grouping the response firing
rates into four classes per neuron. The boundaries of each class were chosen so as to obtain
equipopulated responses across bins. (This procedure is computationally simple and is effective
at preserving information because it maximizes the response entropy for a given number of
bins. For more accurate procedures for minimizing the information loss due to response
quantization, see Dimitrov and Miller (2001).)

It is useful to start by briefly considering the results for the analytic bias corrections for
the mutual information and the rules of thumb for its effective correction. The expression for
the upward bias for the transmitted information has been calculated in several previous studies
(Panzeri and Treves 1996, Victor 2000), and it is as follows:

Bias[I ] = 1

2N ln 2

{∑
s

(R̃s − 1) − (R̃ − 1)

}
(14)

where N is the total number of trials (across all stimuli) and R̃ is the number of relevant response
classes across all stimuli (i.e. the number of different responses r with non-zero probability
P(r) of being observed). R̃s is the number of relevant response classes to stimulus s (i.e. the
number of different responses r with non-zero stimulus-conditional probability P(r|s)). In the
simulations presented in figures 3 and 4, there were a total of 4 × 4 = 16 population response
classes. It can be seen that the information estimates require at least ≈64 trials per stimulus
in order to become reasonably accurate after bias correction7.

We repeated the simulations by systematically varying the total number of response classes.
We found, consistently across different simulations, that the information was reasonably well
bias-corrected if Ns was at least ≈2–4 times bigger than the number of population response
classes R. This provides a stronger constraint on the size of the population than can be analysed
given a certain number of trials per stimulus Ns . If there are C cells, each providing R̃c possible
responses (c = 1, . . . , C), then the total number of possible responses of the population scales
as the product of the number of possible responses of individual cells:

R̃ 	
∏

c

R̃c. (15)

7 We computed bias corrections from equation (14) by using the Panzeri and Treves (1996) procedure to count the
number of relevant bins. This may not be the most effective procedure to estimate the bias. It is possible that future
application of recent advanced techniques (Victor 2002) will further reduce the number of trials needed to compute the
information components. However, the analytical expressions computed here for the averaged bias of each component
are useful to obtain an estimate of the relative magnitude and behaviour of the sampling errors of each component,
whatever the procedure chosen to control for sampling problems.
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Figure 3. Sampling behaviour of the information components. We generated uncorrelated
simulated data (see section 4.1) and we tested how the estimates depend on the data size. The
value of each information component is plotted as a function of the number of trials per stimulus.
The full line (denoted as Itot in the legend) is the total mutual information, equation (1). The other
lines represent the values of each information component (see legend). (a) Values of information
components obtained after subtracting the bias corrections described in the text. (b) ‘Raw’ values
of information components obtained without using any bias corrections. Results were averaged
over 100 random repetitions of the simulation.

We now consider the bias of each individual component. We start this study by considering
the linear term in equation (9). It is the sum of single cell information; hence its bias correction
is easily obtained from Panzeri and Treves (1996) as a sum of single cell contributions:

Bias[Ilin] = 1

2N ln 2

{∑
s

[∑
c

(R̃c;s − 1)

]
−

[∑
c

(R̃c − 1)

]}
(16)

where R̃s
c;s are the relevant bins corresponding to the probability distribution P(rc |s). The

magnitude of the bias of this term is dictated by the sum of possible responses
∑

c R̃c. This
term is one of the most two biased components, but it is not as biased as the whole information.
In fact, the bias of total information depends instead on its product, equation (15). In the
simulations considered in figures 3 and 4, there were eight classes in total in the sum (four per
neuron), and Ilin was well corrected with at least 32 trials per stimulus.

The signal-similarity component and the stimulus-independent correlation component are
very weakly biased. We computed bias correction terms for Isig−sim and Icor−ind . They are
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Figure 4. The sampling behaviour of the information components. Conventions are as presented in
figure 3. However, this time the sampling behaviour was studied using a set of correlated simulated
data (see section 4.2.1).

reported in appendix B. Computer simulations presented in figures 3 and 4 show that, if the
number of trials per stimulus is at least 16–32, the bias of Isig−sim and Icor−ind is very little.
The application of the correction term permits one to obtain very precise estimates of both
Isig−sim and Icor−ind . The main reason why Isig−sim and Icor−ind are much less biased than Ilin

and Icor−dep is that, unlike the other two components, they depend only on the unconditional
response probabilities P(r), and not on the (less well sampled) stimulus conditional response
probabilities P(r|s).

We consider finally the stimulus-dependent correlational term Icor−dep . This is the most
biased of all components (figures 3 and 4). In fact its bias can be expressed approximately as a
difference between the bias of the total information I and the bias of the linear information Ilin .
This is because Icor−dep is expressed as a difference between the total information I and the
linear information Ilin and of other terms of negligible bias (see appendices). Hence, correcting
Icor−dep for limited sampling requires roughly the same number of trials needed to correct for
the total information (otherwise the I term is not under statistical control). However, the overall
magnitude of its bias is less than that of the total information (because of the subtraction of
the bias of Ilin ). In the simulations reported in figures 3 and 4, Icor−dep required some ≈32–64
trials per stimulus to be well corrected, similarly to the total mutual information.
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In summary, a rule of thumb for the amount of data required to compute the information
breakdown is as follows. When there are more trials (at least 2–4 times) per stimulus than
population response classes, then the total mutual information can be reasonably well corrected
for finite sampling. In this case, all other components are also well enough sampled. The two
most biased components are Ilin and especially Icor−dep. When there are enough data to
correct for the bias of Ilin and Icor−dep , Isig−sim and Icor−ind are also well corrected and cause
no problem.

It is important to note that the above bias equations and behaviours are specific to the case
where the independent probability distribution, equation (3), is obtained taking the product of
probabilities of individual cells. Another numerical approach used to compute Pind(·) is to
combine responses of different cells from trials to the same stimulus, but shuffled or shifted-by-
one. This is the approach taken, for example, by Nirenberg et al (2001). We chose to compute
Pind(·) as a product of individual cell probabilities because it gave a slightly better performance
of the numerical evaluation. In particular, computing Pind(·) as a product ensures that, for a
given r and s, Pind(r|s) = 0 implies that P(r|s) = 0. This is an important consistency
property for the information breakdown formulae, and it might occasionally not be fulfilled
by e.g. the shifting-by-one procedure if the number of data available is low.

7. Application to real neurophysiological recordings

In this section we apply the new method to real simultaneous neuronal recordings in sensory
cortices. With this application we wish to demonstrate the use of the new exact information
breakdown method, and outline some of the neurophysiological questions that can be addressed
with it.

We previously introduced a series expansion method that performs the same type of
decomposition of information into coding components as the exact information breakdown
presented here. The series expansion method has very good sampling properties (Schultz
and Panzeri 2001), but can only be applied to systems with relatively low firing rates, with
only few spike emitted in a typical trial. For this reason, we find it interesting to apply the
new method (and compared it to the series expansion) on two data sets with different mean
response properties. We first present an application of the exact information breakdown to
neuronal pairs in rat somatosensory cortex. This dataset presents low firing rates. In the
second example, we present an application of the information breakdown to multi-unit activity
(MUA) simultaneously recorded from two sites in visual area MT of awake monkeys.

7.1. Analysis of neuronal pairs in rat somatosensory cortex

We first apply the new method to neuronal pairs recorded in rat somatosensory cortex to address
whether cross-cell correlation contributes to the coding of the location of a stimulus applied to
a single whisker on the snout. Since typical spike counts for barrel cortical neurons are low,
the mutual information was well approximated by a series expansion method (Panzeri et al
2001, Petersen et al 2001). Since both the exact breakdown and the series expansion method
should be applicable in this case, we will illustrate the relative advantage of each procedure.
We will also discuss which questions can be addressed by the joint application of both the
exact information breakdown and the series expansion method.

We analysed 52 pairs of neurons recorded from the barrel field of somatosensory cortex
of urethane-anaesthetized rats. These data were kindly made available to us by M E Diamond
and M Lebedev (Lebedev et al 2000). Both neurons were located in barrel-column D2, and
each neuron was recorded from a different electrode. Vibrissae C1−3, D1−3 and E1−3 were
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stimulated one at a time, using a piezoelectric wafer controlled by a voltage generator. The
stimulus was an up–down step function of 80 µm amplitude and 100 ms duration, delivered
once per second, 50 times for each vibrissa, 3 mm from their base (see Lebedev et al (2000)
for full details). The analysis was based on a post-stimulus cumulative time window that
was increased in 10 ms steps from 0 to 40 ms. Since we did not have enough trials per
stimulus to compute the joint spike timing information with the exact information breakdown,
we considered the information transmitted by the joint spike count code. The ‘response’ on
each trial was, for each cell, simply the number of spikes occurring in the time window. We
applied the finite sampling corrections described in the previous section.

We explored the nature of the population code employed by these neurons by examining
the contributions from the separate terms of the exact information breakdown and of the series
expansion. The results of information analysis are reported in figure 5. The exact information
breakdown and the series expansion method give very similar results, as expected by the fact
that firing rates are low. In both cases most of information is conveyed by the linear term (the
sum of single cell information). There is appreciable redundancy in both the signal-similarity
information term, and in the stimulus-independent correlational component. This is because
the mean response profiles of neurons located in the same barrel are similar to each other,
and because there is some positive cross-correlation. The values of Ilin , Isig−sim and Icor−ind

computed with the two methods coincided within 2%. The stimulus-dependent correlational
component was relatively small for both methods, although it was bigger when computed in
long windows with the exact information breakdown. At 40 ms post-stimulus, it was 0.01
bits bigger than when computed with the series expansion. This amount is of the order of the
residual bias that is expected in this data range for this component (figures 3 and 4); hence
it is likely that part of this difference (which is, however, small and present only for longer
windows) is due to sampling errors. Hence, we conclude that both the series expansion and
the exact information breakdown give equivalent results on this dataset.

What is the neurophysiological conclusion that we can get from this comparison? The
series expansion quantifies the contribution to information processing of only the second-
order statistic among spikes, whereas the exact method quantifies the contribution of all-order
statistics. Thus, the conclusion that we derive from this comparison is that second-order
statistics is sufficient to describe this population code. The example we presented suggests
that the joint use of both the series expansion method and the exact information breakdown
is one of the tools that can be used to address the role of high order statistics in population
coding, a subject of current investigation (Laubach et al 1999, Nakahara and Amari 2002).

7.2. Analysis of information encoded in cross-correlation of multi-unit activity in visual
cortex of awake monkeys

The salient feature of the new information breakdown proposed here is that, if sufficient data
are collected, it can be used to assess the information content of cross-cell correlation for any
type of neuronal recording, independently of the mean firing rate level. This is a most useful
property because several studies reporting evidence on the role of correlation in the cortex
(Gray et al 1989, Fries et al 1997, Lamme and Spekreijse 1999) are based on recording of
multi-unit activity (MUA). MUA involves typically high firing rates and collection of spikes
from several cells, and hence the assumptions of the series expansion method are certainly
violated in this case.

In this section we apply the information breakdown to multi-unit recordings collected
from the MT visual area of a behaving monkey.

Monkeys were trained on a direction discrimination task. They were fixating a screen
centrally (fixation window ±0.5◦–1◦). A structured background was back-projected onto the
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Figure 5. A comparison of series expansion method and the exact information breakdown method
on an application to neuronal pairs simultaneously recorded from barrel-column D2 in rat barrel
cortex. (a) Series expansion results; (b) exact information breakdown results.

screen. After a randomized period of time a grating was projected onto the screen moving in
one of four possible directions along the cardinal axes, positioned over the receptive fields of
the neurons under study. Luminance contrast, i.e. visibility, of the stimulus was randomized
(0, 2, 4, 17%). Monkeys performed a reaction time task and indicated the perceived direction
of motion by a hand movement to one of four touch bars located in front of the chest. MUA
was recorded through seven electrodes independently placed in area MT and subjected to
threshold discrimination. Neural data analysed in this paper was from high luminance stimulus
conditions. For more detailed information see Thiele et al (1999).

We wish to illustrate how the information breakdown can be used to obtain a credible
evaluation of the information content of cross-correlated firing in this case. We considered the
information transmitted by the joint spike count code. We either computed the spike counts
in cumulative post-stimulus time windows increased in steps of 50 ms ((b) in figures 6 and 7,
called cumulative information), or in sliding time windows 50 ms long ((c) of figures 6 and 7,
called instantaneous information). For the information calculation, we compressed the number
of possible responses by grouping the response firing rates into four equi-populated classes per
neuron. Binning the responses into subclasses, of course, decreases the information. However,
it is preferable to obtain an information value that is approximated because of binning than to
get an estimate that is out of statistical control because of under-sampling and biases. Given
that 50–60 trials per stimulus were available, the binned information values should be free
from bias problems (see figures 3 and 4). In addition to the new analysis method, we used
conventional peri-stimulus–time histogram (PSTH) and CCG analysis. To evaluate the strength
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Figure 6. Information breakdown of multi-unit recordings from MT paired recording sites. In this
example, two uncorrelated recording sites were analysed. (a) PSTHs and CCGs across the set of
four stimuli (values of CCG correlation coefficients reported in the CCGs panels); (b) cumulative
information breakdown; (c) instantaneous information breakdown.

of correlation from the CCG, we used the method of Bair et al (2001). In brief, we computed
shuffle-predictor subtracted CCGs and auto-correlograms (ACG). The strength of correlation
was computed as the area of the subtracted CCG divided by the square root of the product
of the areas of the subtracted ACGs of each recording sites. The areas of all correlograms
were computed in the central 20 ms, in order to evaluate only the strength of correlation of
near-coincident spikes. As demonstrated by Bair et al (2001), this CCG correlation coefficient
is equivalent to a Pearson-normalized spike count correlation coefficient based only on near-
synchronous spikes.

An analysis of the first example of joint MUA recordings is shown in figure 6. The PSTHs
of the two recording sites showed very different stimulus dependencies, and the CCG were flat
and with very small correlation strength (CCG strength values are reported in the CCG panels
of figures 6 and 7). The information analysis gave results very consistent with PSTH and CCG
analysis. All information components leading to possible redundancy or synergy were very
small, and the two sites conveyed nearly independent information, both for cumulative and
instantaneous information.

In figure 7 we report the results of the analysis of two strongly correlated recording sites.
PSTHs of MUA on each site showed a clear stimulus selectivity, and were also very similar
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Figure 7. Information breakdown of multi-unit recordings from MT paired recording sites. In
this second example, two strongly correlated recording sites were analysed. Conventions are as in
figure 6.

between each other. CCGs presented a strong narrow central peak, with high correlation
coefficient. The correlation coefficient of the CCG appeared to be much less stimulus-
modulated than the PSTHs and mean rates. Also in this case, the exact information breakdown
analysis gave results very consistent with PSTH and CCG analysis. The similarity of PSTHs
of the two sites led to an appreciable signal-similarity information redundancy (−54% of
the total at 500 ms post-stimulus). The stimulus-independent correlational component also
decreased the information (this could be explained by the simultaneous presence of similarity
of PSTHs and of positive cross-cell correlation). There was some information in the stimulus
modulations of cross-correlation strength, but this information was only a small fraction of the
total information carried by the pair (figure 7, parts (b) and (c)).

It is worth pointing out that the series expansion analysis gave non-credible results in
both examples. Although it is evident from PSTH differences that in both examples there was
stimulus-related information in the individual cells responses to different stimuli, the series
expansion approach clearly failed to provide sensible results after approximately 80–100 ms
post-stimulus, leading to zero or even negative values for the total mutual information (not
shown). This confirms the usefulness of the new technique for analysing high firing rates
systems and/or long post-stimulus times.
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8. Discussion

A systematic quantification of how cross-correlation contributes to neuronal information
transmission and to coding of stimulus features is an important step towards resolving some of
the controversies on the role of correlation in neuronal coding (Gawne and Richmond 1993,
Nirenberg et al 2001, Petersen et al 2001, Oram et al 2001). Information theoretic formalisms
of the type presented allow a direct and exhaustive investigation of the contribution of neuronal
correlation to stimulus representation in the brain. Thus, in our view, they constitute useful
means to increase our understanding of the function of correlated firing in cortical processing.

This work permits one to obtain a detailed and exact quantification of the information
contribution of several specific coding mechanisms. We previously developed an approximated
approach (the series expansion method (Panzeri et al 1999, Panzeri and Schultz 2001)) that
performed the same separation of information into coding components. However, the series
expansion approach takes into account only the second-order statistics of neuronal interactions,
and it is valid only when just a few spikes per stimulus presentation are typically emitted. The
range of applicability of the series expansion method can be extended significantly by the
inclusion of the contribution of higher order statistics (S R Schultz, personal communication).
However, the series expansion cannot be applied to high firing rate data, such as MUA. MUA is
an important tool to investigate the role of correlated firing. One important and unique feature
of the new exact information breakdown is that it can be applied to high firing rate systems
and multi-unit data.

The exact information breakdown, like any direct quantification of information from the
stimulus-response probabilities (Strong et al 1998), requires relatively large amounts of data
in order to obtain unbiased information estimates. In general, it requires more data than the
series expansion method (Schultz and Panzeri 2001). Hence, although both the exact and
approximated methods are designed to address the very same neurophysiological questions,
they have complementary ranges of applicability. Of particular interests are experimental
conditions in which firing rates are low enough for the series expansion to be applicable, and
data are abundant enough for the new exact method to be also applied. In this case, comparing
the information obtained by the second-order series expansion to the information obtained
with the exact method can lead to determine whether higher order correlations convey any
information. We performed this comparison on pairs of neurons recorded in rat somatosensory
cortex, and we found that using only second-order statistics led to an estimation of information
that was, component by component, almost identical to the information conveyed by the full
response probability distribution (see figure 5). This allowed us to demonstrate that in this
case the population of somatosensory neurons did not convey any information by means of
higher order response statistics.

A limitation of studies such as the present one is that they only reveal what information is
available (or ‘encoded’) in the neuronal responses. How the nervous system might make use of
the available information is a separate issue. One specific question is relevant in the context of
correlated coding. If there is information encoded in correlated firing, could this information
be decoded by a downstream neuronal system that ignores correlation? Nirenberg et al (2001)
recently tackled this question in the retina by explicitly quantifying how much information
is lost in trying to decode a correlated population response by using an uncorrelated model.
In this paper we found that the information neglected by the uncorrelated model equals the
information specifically carried by the stimulus-modulation of the correlation strength. We
find this result interesting for at least two reasons. First, it adds further significance to the
information breakdown equations derived in this paper. It shows that they might be used not
only to infer how correlations encode information, but also how a downstream system could
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decode this information. In particular, if the stimulus-dependent correlational term is zero, the
decoder can ignore correlation with no information loss, even if there is positive information
in the stimulus-independent correlational mechanism. Second, this result might help further
clarifying the significance and the implications of recent work on correlations in the retina
(Nirenberg et al 2001).
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Appendix A. Verification of the information breakdown formulae

In this appendix we give a concise explanation of how to verify that the sum of the components
of the information breakdown equals the mutual information, equation (1). The idea is to
express equations (9)–(12) in terms of entropies and entropy-like quantities, the sum of which
apparently equals the mutual information.

First, it is easy to show by standard information-theoretic calculations (Cover and Thomas
1991), that the linear information breakdown term, equation (9), can be written as a difference
of entropies:

Ilin =
∑

c

(H (Rc) − H (Rc|S)) (17)

where H (Rc) and H (Rc|S) are, respectively, the entropy and the conditional entropy of the
probability distributions of the cth cell:

H (Rc) = −
∑

rc

P(rc) log2 P(rc) (18)

H (Rc|S) = −
〈∑

rc

P(rc|s) log2 P(rc |s)
〉

s

. (19)

Let us now consider the signal similarity information component, equation (10). Using
the definition of the signal similarity coefficient, equation (6), and the zero-sum constraint,
equation (7), it can be proved that

Isig−sim = Hind(R) +
∑

r

Pind(r) log2

(∏
c

P(rc)

)
(20)

where

Hind(R) = −
∑

r

Pind(r) log2 Pind(r). (21)

Then, using the following identity:∑
r

Pind(r) log2 P(rc) = −H (Rc) (22)

valid for each cell c = 1, . . . , C , we can finally express the signal similarity term as

Isig−sim = Hind(R) −
∑

c

H (Rc). (23)



56 G Pola et al

Let us now consider the stimulus-independent correlational component, equation (11). Using
the definition of ν, equation (6), the zero-sum constraint, equation (5) and the identity (22),
equation (11) can be re-expressed as follows:

Icor−ind = −Hind(R) + χ[P, Pind ] (24)

where χ is a entropy-like term, defined as

χ[P, Pind ] = −
∑

r

P(r) log2 Pind(r). (25)

Finally, using similar manipulations it can be shown that the stimulus dependent correlational
component, equation (12), can be rearranged in the following equivalent form:

Icor−dep = I − χ[P, Pind ] +
∑

c

H (Rc|S). (26)

In summary, the information breakdown can be re-expressed in the following form:

Ilin =
∑

c

(H (Rc) − H (Rc|S)) (27)

Isig−sim = Hind(R) −
∑

c

H (Rc) (28)

Icor−ind = −Hind(R) + χ[P, Pind ] (29)

Icor−dep = I − χ[P, Pind ] +
∑

c

H (Rc|S). (30)

It is now straightforward to verify that the sum of equations (27)–(30) exactly equals the total
information I . Together with the properties of the individual terms discussed in section 3,
this constitutes a proof that the equations we derived indeed form an exact and meaningful
breakdown of information into coding components. Expressing the information components
as in equations (27)–(30) is convenient for numerical implementation of the analysis and for
calculation of the bias of each component (see appendix B).

Appendix B. Computation of bias corrections terms

In this appendix we describe the calculation of the bias correction for the components of
the information breakdown. As shown in appendix A these components can be expressed in
terms of H (Rc), H (Rc|S), Hind(R), χ[P, Pind ] and I , see equations (27)–(30). Hence, it is
sufficient to compute the bias corrections only for these entropies and entropy-like quantities.
We assume that there are Ns trials to each stimulus s (N is the total number of trials across
stimuli). We also assume that the outcome of each trial is an independent realization of the
same stochastic process. We define the bias of a given functional of the probabilities as the
difference between the average value of the functional when the probabilities are computed
from N trials only and the value of the functional computed with the true probabilities (obtained
from an infinite number of observations).

We calculate the bias of each probability functional using a simple procedure, namely by
using a Taylor series expansion of these quantities around the true value and then averaging
over all possible outcomes of the N trials. We considered only up to the first two terms in the
Taylor series expansion. This approximation is good if there are enough experimental trials N
to make small the fluctuations of the estimated probabilities around the asymptotic value.

To illustrate this kind of calculation, let us start from the simplest case, i.e. the calculation
of the bias correction for the entropy of the response of a single cell c, equation (18). We
denote by a subscript N the calculation of the probability from N trials instead that from the true



An exact method to quantify the information transmitted by different mechanisms of correlational coding 57

underlying probability distributions. The average systematic error (bias) can be approximately
computed by taking a Taylor series expansion for HN(Rc) around the true probability P(rc),
and then averaging over all possible outcomes with N trials:

Bias[H (Rc)] = 〈HN (Rc)〉N − H (Rc)

≈
∑

r̃c

δH

δP(r̃c)
〈PN (r̃c) − P(r̃c)〉N

+
1

2

∑
r̃c

δ2 H

δP(r̃c)2
〈(PN (r̃c) − P(r̃c))

2〉N + · · · (31)

where δH
δP stands for the functional derivative of the entropy with respect to response probability

distribution, computed in the asymptotic value P(r̃c). We introduce the symbol r̃c to distinguish
it from rc which is a running variable used to define H (Rc) (see equation (18)). Multinomial
combinatorics allow one to obtain the following expression for the bias and variance8 of P(r̃c):

BN [P(r̃c)] = 〈PN (r̃c) − P(r̃c)〉N = 0, (32)

σ 2
N [P(r̃c), P(r̃c)] = 〈(PN (r̃c) − P(r̃c))

2〉N = P(r̃c)(1 − P(r̃c))

N
+ o

(
1

N

)
. (33)

Hence

Bias[H (Rc)] ≈ − 1

2N ln 2
(R̃c − 1), (34)

where R̃c denotes the number of ‘relevant’ bins, i.e. the response bins in which the occupancy
probability P(r̃c) is not zero (see Panzeri and Treves 1996). Analogously it is possible to
compute the bias correction for the conditional entropy. Hence the bias correction for the
single cell terms reads

Bias[H (Rc|S)] ≈ − 1

2N ln 2

∑
s

(R̃c;s − 1), (35)

where R̃c;s are the relevant bins corresponding to the probability distribution P(r̃c |s). The
bias correction for the total mutual information I is reported in equation (14) and it can be
computed simply as the bias difference of unconditional and conditional response entropies.

Let us now calculate the bias correction for Hind(R) by using the approach outlined above.
In this case the calculation is more complex because Hind(R) is a functional of the probability
distributions P(s) and P(rc|s) through the independent stimulus-unconditional probability
distribution Pind(r). The leading term of the bias correction for Hind(R) is given by

Bias[Hind] ≈ 1

2

∑
s

δ2 Hind

δP(s)2
σ 2

N [P(s), P(s)] +
1

2

∑
s,s ′,s �=s ′

δ2 Hind

δP(s)δP(s′)
σ 2

N [P(s), P(s′)]

+
1

2

∑
s

∑
c

∑
r̃c

δ2 Hind

δP(r̃c|s)2
σ 2

N [P(r̃c|s), P(r̃c |s)]

+
1

2

∑
s

∑
b,c,b �=c

∑
r̃b,r̃c

δ2 Hind

δP(r̃b|s)δP(r̃c|s)σ
2
N [P(r̃b|s), P(r̃c |s)], (36)

8 The variance of a probability distribution PX and the co-variance of two probability distributions PX and PY are
defined respectively as

σ 2
N [PX , PX ] ≡ 〈(PX,N − PX )2〉N ,

σ 2
N [PX , PY ] ≡ 〈(PX,N − PX )(PY,N − PY )〉N ,

where we remind that 〈· · ·〉N stands for averaging over all possible outcomes with N trials.
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where δHind
δP stands for the functional derivative of the independent entropy with respect to

response probability distributions (computed in the asymptotic value), and σ 2
N [·, ·] are the

variances and co-variances of the probability distributions P(s) and P(r̃c|s). In equation (36)
we do not report the contributions of the linear derivatives because, like in equation (31), they
do not contribute to the bias of the independent entropy. In the above we also omitted the
quadratic terms which are zero and thus do not contribute to the bias of Hind(R). As in the
derivation of the bias correction for single cell entropy we consider the Taylor expansion up to
second order. After performing the functional derivatives, the equation for the bias correction
(36) becomes

Bias[Hind] ≈ − 1

2 ln 2

∑
s

∑̂
r

P2
ind(r|s)
Pind(r)

σ 2
N [P(s), P(s)]

− 1

2 ln 2

∑
s,s ′,s �=s ′

∑̂
r

Pind(r|s)Pind(r|s′)
Pind(r)

σ 2
N [P(s), P(s′)]

− 1

2 ln 2

∑
s

∑
c

∑
r̃c

∑̂
r

P2(s)

Pind(r)

P2
ind(r|s)

P2(r̃c|s) δ[rc,r̃c]σ
2
N [P(r̃c|s), P(r̃c |s)]

− 1

2 ln 2

∑
s

∑
b,c,b �=c

∑
r̃b ,r̃c

∑̂
r

P(s)δ[rb ,r̃b]δ[rc,r̃c]
Pind(r|s)

P(r̃b|s)P(r̃c|s)

×
(

P(s)Pind (r|s)
Pind(r)

+ ln Pind(r)

)
σ 2

N [P(r̃b|s), P(r̃c |s)], (37)

where
∑̂

r is a summation restricted to the response variables r such that Pind(r) �= 0, and
δ[rc,r̃c ] is a Kronecker delta (i.e. δ[rc,r̃c ] = 1 if rc = r̃c and δ[rc,r̃c] = 0 if rc �= r̃c). The values of
the variances and co-variances are as follows:

σ 2
N [P(s), P(s)] = P(s)(1 − P(s))

N
+ o

(
1

N

)
, (38)

σ 2
N [P(s), P(s′)] = − P(s)P(s′)

N
+ o

(
1

N

)
, (39)

σ 2
N [P(r̃c|s), P(r̃c |s)] = P(r̃c)(1 − P(r̃c))

Ns
+ o

(
1

Ns

)
, (40)

σ 2
N [P(r̃b|s), P(r̃c |s)] = − P(r̃b)P(r̃c)

Ns
+

P(r̃b, r̃c)

Ns
+ o

(
1

Ns

)
. (41)

After replacing the explicit values of variances and covariances in equation (37) and performing
some algebra, we obtained the following final expression for the bias of Hind(R):

Bias[Hind] = 1

2N ln 2

∑̂
r

1

Pind(r)

〈(
C2 − 1 − α(r|s)

Pind(r|s) − β(r|s)
)

P2
ind(r|s)

〉
s

+
1

2N ln 2

[
1 +

∑̂
r

∑
s

(C2 − C − β(r|s))Pind(r|s) ln Pind(r)

]
(42)

where C is the number of cells and α(r|s) and β(r|s) are defined as follows:

α(r|s) =
∑

c

Pind(r|s)
P(rc|s) , (43)

β(r|s) =
∑

b,c,b �=c

P(rb, rc|s)
P(rb|s)P(rc|s) . (44)
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It is worth stressing that both α(r|s) and β(r|s) are regular and finite quantities in the range
allowed for the sum over r.

Finally, let us consider the bias correction for χ[P, Pind ]. This term can be considered
as a functional of P(s), P(rc |s), and P(r|s). The bias correction can be computed, as above,
calculating the Taylor series expansion of χ[P, Pind ] around the true values of the probability
distributions and, then, averaging over all possible outcomes with N trials. The required
variances and co-variances are those given by equations (38)–(41) and the following:

σ 2
N [P(r̃c|s), P(r|s)] = − P(r̃c|s)P(r|s)

Ns
+ δ[rc,r̃c]

P(r|s)
Ns

+ o

(
1

Ns

)
. (45)

The result of the calculation for the bias correction for χ is

Bias[χ] = − 1

2N ln 2

∑̂
r

P(r)

P2
ind(r)

〈(
C2 − 1 − α(r|s)

Pind(r|s) − β(r|s)
)

P2
ind(r|s)

〉
s

+
1

2N ln 2

[
1 +

∑̂
r

P(r)

Pind(r)

∑
s

Pind(r|s)(C2 − C − β(r|s))
]

+
1

2N ln 2

∑̂
r

1

Pind(r)

〈
P(r|s)Pind(r|s)

(
2C − 2 − 2

α(r|s)
Pind(r|s)

)〉
s

. (46)

In the absence of correlation (P = Pind ) the total bias for the stimulus-independent
correlational component (obtained by subtracting Hind(R) to χ[P, Pind ], see equation (29))
is zero, no matter how big N is. This is because the stimulus-independent correlational
component does not contain any correlation term in the argument of the logarithm, see
equation (11).
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