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Summary

The superior colliculus (SC) in primates plays an im-
portant role in orienting gaze and arms toward novel

stimuli. Here we ask whether neurons in the intermedi-
ate and deep layers of the SC are also involved in the

interaction with objects. In two trained monkeys we
found a large number of SC units that were specifically

activated when the monkeys contacted and pushed
a target that had been reached with either hand. These

neurons, however, were silent when the monkeys sim-
ply looked at or reached for the target but did not touch

it. The activity related to interacting with objects was
spatially tuned and increased with push strength. Neu-

rons in the SC with this type of activity may be involved
in a somatosensory-motor feedback loop that moni-

tors the force of the active muscles together with the
spatial position of the limb required for proper interac-

tion with an object.

Introduction

The superior colliculus (SC) is a multilayered, multimodal
sensorimotor structure of the mammalian midbrain, and
a presumed homolog of the optic tectum plus subtec-
tal and tegmental regions of other vertebrate groups,
containing topographical maps of the visual, auditory,
and somatosensory world (Updyke, 1977; Meredith and
Stein, 1986; Jay and Sparks, 1987b). It plays an impor-
tant role in visually guided behavior, and due to the
integration of multimodal sensory information, the SC
is involved in orienting responses toward an object
of interest of any modality (Wurtz and Albano, 1980;
Jay and Sparks, 1987a, 1987b; Schiller and Tehovnik,
2001; Stein et al., 2001). The SC guides oculomotor pro-
cesses, i.e., the initiation and control of saccadic eye
movements (for a review see Sparks and Hartwich-
Young, 1989), and contributes to skeletomotor func-
tions. The activity of SC neurons is linked to movements
of the head (Roucoux et al., 1980; Cowie and Robinson,
1994; Pare et al., 1994; Freedman et al., 1996), neck
(Grantyn and Berthoz, 1985), and front leg (Abrahams
and Rose, 1975; Cowie and Robinson, 1994; Werner,
1993; Werner et al., 1997a, 1997b). Neurons with arm
movement-related activity that code the arm trajectory
in two different reference frames (gaze dependent or
gaze independent) were described in the SC earlier
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(Stuphorn et al., 1999; Lünenburger et al., 2000, 2001).
Also, if the colliculus is involved in skeletomotor func-
tions, one might expect that it receives cutaneous or
proprioceptive feedback similar to other skeletomotor
areas (Martin et al., 1993; Arts and Cools, 2000).

Despite the well-described function of the SC in
reaching movements, we have no information whether
the SC plays a role in grasping, holding, or pushing the
reached targets. In most manipulations, we use our fin-
gertips to apply time-varying forces to the target object
in controlled directions. The posterior parietal cortex
(PPC), which is also involved in reaching and is inti-
mately linked to the SC, clearly contributes to encoding
the direction of fingertip forces for grasp stability during
manipulation (Birznieks et al., 2001; Ehrsson et al.,
2003). Does the SC play a similar role?

To answer these questions, we aimed to investigate
whether we could find SC units that were active during
contact with and pushing of a button that had been
reached for. Our results led to the description of a func-
tional neuronal type in the SC of the primate brain,
denominated by us as the ‘‘somatosensory-motor
neuron.’’

Results

Identifying Somatosensory-Motor Neurons

We recorded single neurons in the monkey SC that ex-
hibited significant modulation of their discharge rate
during specific phases of visually guided reaches (Fig-
ure 1). A surprisingly high proportion of the SC units
that modulated during the reach tasks were significantly
distinct from previously described reach neurons
(Werner, 1993; Werner et al., 1997a, 1997b; Stuphorn
et al., 1999; Lünenburger et al., 2001) in that they re-
sponded vigorously when the monkey made contact
with or pushed against the central and/or peripheral tar-
gets on the working panel. They were inactive or only
slightly active during the reach (arm-moving) phases.
These neurons were also not sensitive to visual stimuli
and were inactive or only weakly activated by fixation
or saccades. Because the activity of these neurons
showed no relationship to visual stimuli or saccades,
but instead required self-accomplished physical con-
tact with the target, we denominated them or their activ-
ity as somatosensory-motor. In reach paradigm A, 12 SC
cells were recorded, all of which exhibited their highest
activity during contact with the target (Figure 2). In order
to investigate the nature and the coding properties of
this activity, we modified the task in reach paradigm
B by implementing push buttons requiring different
push forces in five different spatial positions; we then
recorded another 118 neurons.

The typical activity profile of a somatosensory-motor
neuron in reach paradigm B is shown in Figure 3. The
neuron was not active before contact with the target,
in the fixation phase, or in the first hand-moving phase.
The first sharp increase in discharge rate occurred 50 to
100 ms after contact with the central target and contin-
ued until the end of the push phase. With the beginning
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Figure 1. Schematic Drawing of the Visually Guided Reach Paradigm B Performed by the Monkey

(A) Spatial arrangement of the reach task. The typical sequence in the reach paradigm was as follows: (1) Fixation + Cue phase (F+C): the animal

placed his hand at the start position and fixated on a blue spot on the screen. The central target for the hand turned red immediately. (2) Reaction

time 1 (RT1): the central push button changed to green. The time between the appearance of the green go signal to the start of the arm movement

is the reaction time 1. (3) Move phase 1 (M1): first arm movement to the central push button. (4) Push phase 1 (P1): the animal pushed the central

button without getting a new target signal. (5) Push 1 + Cue phase (P1+C): one of the 4 peripheral push buttons turned red. (6) Reaction time 2

(RT2): the red peripheral push button changed to green. The time between the appearance of the green go signal to the start of the arm movement

is the reaction time 2. (7) Move phase 2 (M2): the monkey performed the second arm movement to the green peripheral push button. (8) Push

phase 2 (P2): the animal had to press the peripheral button until the green signal turned off. (9) Reaction time 3 (RT3): this phase extends

from the extinction of the green hold signal to the beginning of the movement back to the start position. (10) Move phase 3 (M3): the monkey

placed his hand back to the start position.

(B) The temporal arrangement of the paradigm. The visual signals that guide the paradigm have the same color codes as those in Figure 1A. The

thick black lines denote the arm actions.
of the second arm movement, the activity was strongly
attenuated and reappeared with the second push phase
at the peripheral target. The activity was attenuated
again in the third arm movement phase back to the start
position, and low spontaneous or no activity prevailed
until the first push phase of the next trial.

The time course of somatosensory-motor neuron ac-
tivity coincided with the monkey maintaining a fixed
reach (hold), making contact with the button, and press-
ing of the button. We therefore investigated in paradigm
C whether the somatosensory-motor neurons were also
active when the monkey actively held his arm up by the
target without contacting or pressing it. We found con-
sistently higher neuronal activity during the push phase
than during the hold phase. Two types of somatosen-
sory-motor neurons could be distinguished by their
neuronal activity in the hold phase (Figure 4A). The large
majority of the cells (13 out of 16) exhibited vigorous
responses during the push phase, but were not or only
very weakly active during the hold phase (analysis of
variance [ANOVA], p < 0.05 comparing push and hold
phase). The minority of the neurons (3 out of 16) were
moderately activated during the hold as well as the
push phase. Even here the elevation of the somatosen-
sory-motor activity was higher during the push (though
not significantly; ANOVA, p > 0.05) than during the hold
phase.

All of the 130 somatosensory-motor neurons (12 in
paradigm A, 102 in paradigm B, and 16 in paradigms B
and C) investigated in the two monkeys were located
in the intermediate and deep layers of the SC, between
1.2–4 mm under the collicular surface (median = 3.1
mm); i.e., in the same depths as the reach neurons
(median = 2.8 mm, range: 1.4–4 mm).

Control for Cutaneous and Proprioceptive
Responses

In these investigations we searched for cutaneous fields
on the arm, hand, or finger surface by light touches and
strokes. We also looked for proprioceptive influences
similar to those occurring during the active push by mov-
ing the arm of the animal passively or by pushing against
the shoulder to stretch the neck, shoulder, or trunk mus-
cles. We could record the activity of 54 out of the 130
somatosensory-motor units during these manipulations.
Only two of these neurons were responsive to somato-
sensory stimulation of the body surface, specifically at
the palms and the fingers of the monkey. However,
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Figure 2. Neuronal Activity in a Primate’s Superior Colliculus when His Hand Contacts a Target

Peristimulus time histograms (PSTH, 20 ms bins) of activity of a single somatosensory-motor neuron in paradigm A. The abscissa represents the

time relation of the neuronal activities (ms), while the ordinate represents the firing rate (imp/s) of the unit. The data are aligned to time t = 0 ms,

when the monkey’s hand made contact with the target. Note that the activity of this neuron is restricted to the contact phases. Moreover, this

neuron showed a significant difference between its activity levels for different target locations, with a preference for the right target.
about half of the 54 neurons were activated when the
experimenter moved the arm of the monkey passively
(22 out of 38) or pushed strongly against the shoulder
(5 out of 16, Figure 4B). We subjectively estimated that
the higher the monkey’s arm was passively lifted or the
stronger the push against the shoulder, the more in-
creased the activity in these 27 neurons. This passive
stretch response to lifting the arm or pushing against
the shoulder was much weaker than the neuronal re-
sponse during the active push and did not correlate
with the spatial tuning during the active push; i.e., a neu-
ron could be most active when the monkey pressed the
lower target, but only started to discharge when the arm
was passively lifted up well above the preferred target.

Somatosensory-Motor Responses
Occur after Contact

The spontaneous activity of the 130 somatosensory-
motor neurons measured during the fixation phase
was very low, with a median firing rate of 2 spike/s
(127 cells with a range of 0–10 spikes/s and 3 cells which
fired 14, 18, and 20 spikes/s, respectively). In contrast,
the responses during the contact and push phases at
the preferred position of each unit were moderate to vig-
orous, with a median firing rate of 31 spikes/s (range: 6–
135 spikes/s). The responses appeared with some delay
after target contact, when the animal was already press-
ing the button with a minor force of 1.5 N to close the
contact of the sensor. The median response onset delay
of the activity during the press of the central button was
50 ms (n = 34, range: 15–135 ms); at the upper target, it
was 72 ms (n = 29, range: 30–130 ms); at the left target, it
was 60 ms (n = 28, range: 20–110 ms); at the right target,
it was 50 ms (n = 29, range: 30–100 ms); and at the lower
target, it was 65 ms (n = 26, range: 30–155 ms). There
was no significant difference in the delay periods during
the presses of the different targets (ANOVA, p = 0.39).

Somatosensory-Motor Neurons

in the Colliculus Are Bimanual
We recorded somatosensory-motor activity in 12 neu-
rons from the left and 3 neurons from the right SC while
the monkey performed the task first with his contralat-
eral arm and then with his ipsilateral arm (Figure 3). All
of these units were bimanual, and the spatial tuning of
the somatosensory-motor responses of 13 units re-
mained clearly similar irrespective of whether the ipsilat-
eral or contralateral arm was used. However, 6 of these
15 neurons showed arm specificity (ANOVA, p < 0.05).
Four of them were significantly more active when the ip-
silateral arm was used, while two of them elicited signif-
icantly higher activity during the button press with the
contralateral arm (Figure 5). The median activity of these
15 units during the press with the contralateral arm (me-
dian = 23 spikes/s, range: 6–55 spikes/s) or the ipsilat-
eral arm (median = 24 spikes/s, range: 11–52 spikes/s)
was not significantly different (Wilcoxon test for cor-
related samples, p = 0.35). Furthermore, we recorded
somatosensory-motor activity from 6 units in the right
(ipsilateral) SC during the push with the right arm and
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Figure 3. Neuronal Activity in a Primate’s Superior Colliculus when His Hand Presses a Target

Relative time histograms (RTHs) of activity of a somatosensory-motor superior colliculus unit in paradigm B during use of the contralateral arm

(A) followed by the ipsilateral arm (B). Note that this neuron displays a strong arm specificity, activity during the use of the contralateral arm being

significantly higher. The sequences in the reach paradigm were the same as described in Figure 1. Vertical broken lines delineate the phases.

Note that this neuron was inactive in the reach phases and highly active in the push phases. The abscissa represents the time relation of the

neuronal activities (ms), while the ordinate represents the firing rate (imp/s) of the units. In the central part of each panel is the schematic drawing

of the reach paradigm. The rectangle represents the panel with the push buttons that was placed 28.6 cm in front of the animal. The five gray

spots show the arrangement of the five push buttons. The black spot represents the position of the fixation point during the whole task.
compared it with activity from 16 neurons recorded in
the left (contralateral) SC. The population activity pro-
files of the units in the SC ipsilateral and contralateral
to the right arm were identical, with no difference in
either response amplitude or tuning.

Coding of Push Strength and Spatial Location
Irregardless of whether the somatosensory-motor activ-
ity is efferent or reafferent, it should vary with push
strength. Therefore, we tested this activity in 18 units
during button pressing with stronger force (6 N) inter-
mingled with the pushes with lighter force (1.5 N). Press-
ing with stronger forces elicited significantly higher dis-
charge rates in 8 neurons than pressing with weaker
forces (ANOVA, p < 0.05) (Figure 6). The median activity
of these 18 units caused by a stronger push (median = 20
spikes/s, range: 4–38 spikes/s) was significantly higher
than that caused by a lighter push (median = 16
spikes/s, range: 2–38 spikes/s; Wilcoxon test for corre-
lated samples, p < 0.01).
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We analyzed the activity of somatosensory-motor
neurons while the monkey made contact with targets in
different spatial locations. Thirty-three of the sixty-one
units tested (54%) were selective for the location, i.e.,
at one of the five different target locations the discharge
rate of a neuron was significantly higher than the mean of
the discharge rates at the other positions (p < 0.05).
Within this population of these 61 neurons, the target lo-
cation that elicited the maximal neuronal discharge rate
was distributed almost evenly. Sixteen units were most
active during contact with and pushing the central tar-
get, nineteen with the right target, nine with the upper
target, seven with the left target, and ten with the lower
target. We sorted the 61 SC neurons into five subpopula-
tions according to the target site eliciting maximal activ-
ity and analyzed the tuning of these groups. In each neu-
ronal subpopulation the spatial tuning of the responses
was clearly recognizable. The subpopulation that was
most active during the press of the right target exhibited
the sharpest spatial response tuning. (Figure 7).

The averaged somatosensory-motor responses to
different target locations summed over all 61 neurons
were very similar. The median firing rate in the contact
and push phase at the central target was 17 spikes/s

Figure 4. Activity of Somatosensory-Motor Neurons during Hold

and during Passive Stretch

Activity of somatosensory-motor neurons when the monkey holds

his arm near the target (A) or during passive stretch (B) of the trunk

and the chest in comparison to the monkey actively pressing the

buttons. Each point in the scatter plot demonstrates the relationship

between the median responses of a single neuron during a button

press (abscissa in A and B) and during a period when the monkey

holds his arm aloft without contact to the same button (ordinate in

A) or during the period when the experimenter pushes the chest of

the fixed monkey backward in order to stretch the trunk and chest

muscles (ordinate in B). The solid line corresponds to unity slope.

Note the consistently higher neuronal activity during the monkey’s

button push. The squares indicate the somatosensory-motor neu-

rons that either elicited significant hold activity (A) or were activated

significantly above spontaneous activity levels during passive

stretch (B), while the triangles represent the units with significantly

elevated activity only during target pushing. Axes are scaled in im-

pulses per second (imp/s).
(range: 0–135 spikes/s); at the upper target, it was 16
spikes/s (range: 0–110 spikes/s); at the left target, it
was 16 spikes/s (range: 0–103 spikes/s); at the right tar-
get, it was 19 spikes/s (range: 1–123 spikes/s); and at the
lower target, it was 16 spikes/s (range: 0–115 spikes/s).
There was no significant difference (p = 0.48) among
these values in a one-way ANOVA.

Discussion

We recorded neuronal activity from the SC of the ma-
caque brain in visually guided reach paradigms and de-
termined the SC population activated during this task.
These neurons exhibited vigorous responses during
contact with the reached for target and/or during the
press of the target. These neurons were inactive or
only slightly active during the reach phases of the task.
Thus, these neurons played no significant role in the
control of the trajectory of the arm, but instead were
highly active during the interaction with the reached
object. The results detailed above seem to reveal yet
another functional role of neurons in the primate’s SC,
in addition to their well-described contribution to chang-
ing or holding gaze (see for review: Guitton et al., 2003)
and direction of the front leg or arm to a target (Courjon
et al., 2004; Werner et al., 1997a, 1997b). These results
do not clearly discriminate whether the activity of these
somatosensory-motor neurons is efferent or reafferent.

The somatosensory-motor neurons, similar to the
reach neurons, spread through the intermediate and

Figure 5. Bimanual Responses of 15 Somatosensory-Motor

Neurons

Each point of the correlogram demonstrates the relationship be-

tween the median responses of a single neuron during button press-

ing with the ipsilateral (abscissa) arm and the contralateral (ordinate)

arm. The solid line corresponds to unity slope. The triangles show

the SC units that were similarly active using both arms, the squares

represent the units that exhibited significantly higher activity during

the button press with the contralateral arm, and circles show the

neurons that were significantly more active during the button press

with the ipsilateral arm. Note that the activity of the majority of the

units was not different whether the ipsilateral arm or the contralat-

eral arm was used. The RTHs of the circled neuron are presented

in Figure 3. Axes are scaled in impulses per second (imp/s).
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deep layers of the SC (Stuphorn et al., 2000; Werner et al.,
1997b) and are intermingled with other cell types. The
spontaneous activity of somatosensory-motor neurons
in the SC is very low, lower than in previously described
reach units (Werner et al., 1997b). In addition to their low
or absent spontaneous activity, these units are inactive
during the reaction, delay, and arm movement phases
of the task, which makes them unrecognizable in a reach
task without a lasting contact or push phase. Also, the
large majority of the somatosensory-motor neurons
were inactive or only weakly active when the monkey
held its arm up beside the target without actually touch-
ing or pressing it. These properties are probably the
main reasons why these neurons have evaded descrip-
tion so far. Once identified, they were recorded very fre-
quently during our paradigm B, outnumbering the reach
neurons by far. This specific activity during paradigm B
suggests a strong connection between somatosen-
sory-motor neuron activity and both contact with or in-
teraction with the target. The activity of some of these
neurons covaried with the force that had to be exerted
to close the contact of the button. Another important pa-
rameter modulating the discharge rate was the spatial
location of the target in the working space; i.e., the re-
sponses of the majority of the neurons were significantly
different during target presses in different spatial posi-
tions. The target location eliciting maximal responses
varied among the cells recorded, but the averaged re-
sponses summed over all neurons were very similar at
the five different target locations. Another surprising
property of the somatosensory-motor neurons was

Figure 6. Activity of 18 Somatosensory-Motor Neurons during

Pushes with Different Forces

Each point of the correlogram demonstrates the relationship be-

tween the median responses of a single neuron during a lighter

(1.5 N) and a stronger (6 N) push. The abscissa represents the neu-

ronal push activity (imp/s) associated with a lighter push, while the

ordinate shows the neuronal push activity (imp/s) associated with

a stronger push. The solid line corresponds to unity slope. The

squares demonstrate the SC units that were similarly active during

both a stronger and a lighter push, while the triangles represent

the units that were significantly more active during a stronger

push. Axes are scaled in impulses per second (imp/s).
their bimanual responses. In more than half of these
neurons, spatial tuning remains similar when either the
ipsilateral or the contralateral arm is used.

The SC is a prominent subcortical projection zone of
the PPC (Fries, 1984; Pare and Wurtz, 1997; Glickstein,
2003; Lock et al., 2003), which is the part of the primate
cortex strongly involved in the preparation and execu-
tion of oculomotor and skeletomotor processes (Mount-
castle et al., 1975; Ferraina et al., 1997a, 1997b; Snyder
et al., 1997, 1998, 2000; Battaglia-Mayer et al., 2003).
Several lines of evidence point to the important role
played by PPC in carrying out sensorimotor transforma-
tions that underlie visually guided reaching (Battaglia-
Mayer and Caminiti, 2002; Buneo et al., 2002; Jackson
et al., 2005). In their original influential paper on the pa-
rietal cortex, Mountcastle et al. (1975) described that
about two thirds of the neurons in area 5 are activated
by proprioceptive stimulation and that a large propor-
tion of these neurons were relatively insensitive to pas-
sive joint rotation, but were driven to high rates of dis-
charge when the same joint was rotated by active
movement of the animal. Georgopoulos et al. (1984)
and Kalaska and Hyde (1985) described neuronal activ-
ity in parietal area 5 during the active maintenance of the
arm in specific positions. Our results for somatosen-
sory-motor neurons in the SC were very similar. These
findings suggested a strong functional relationship of
the PPC with the SC, not only in reaching, but also in
holding and pushing that’s directed toward the reached
target. The activity of these SC neurons ‘‘highlights’’
spatial information about target location, arm position,
and required force while the animal is contacting and
pressing the target.

Activity in the PPC can also be clearly evoked by pas-
sive somatosensory stimulation (Breveglieri et al., 2006).
Hand movement-related neurons have been found in the
anterior intraparietal area during manipulation of various
types of switches: push button, pull lever, pull knob, and
pull knob in a groove (Taira et al., 1990; Sakata et al.,
1995, 1997; Fattori et al., 2004). Furthermore, the excit-
atory and inhibitory responses of individual PPC neu-
rons coincided with specific components of the hand ki-
nematics or signaled interactions between the hand and
the object (Gardner et al., 1999; Roy et al., 2000; Debowy
et al., 2001). These neurons were clearly active during
the delay and premovement periods, which suggests
their role in the motor aspects of the target manipula-
tions. Push motor activity has been further described
in the arm area of the primary motor cortex, in the sup-
plementary motor area, in the premotor cortex, and in
the claustrum (Mushiake et al., 1991; Halsband et al.,
1994; Shima et al., 1996). Here we see more differences
than similarities to the somatosensory-motor neurons in
the SC, especially in the timing of activity onset before
contact with the object in cortical neurons and after
contact in collicular neurons.

The fundamental question is whether the somatosen-
sory-motor units in the SC are reafferent neurons, pro-
viding information about the stretch or force of the ade-
quate muscles during interaction with the target, or
whether they are outflow neurons that control the mus-
cle activity that is necessary to push the targets. The
somatosensory-motor neurons in the SC, in contrast
to cortical neurons described above, never responded
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Figure 7. Spatial Tuning of Somatosensory-Motor Activity

Each panel represents a neuronal population clustered upon the target site of their maximal activity (central, right, up, left, low). The numbers

above each graph demonstrate the number of cells that exhibited their maximal discharge rate during a push of a button in that target location.

The five drop lines in each panel demonstrate the median activity of the SC populations during the push of each of the five different targets. Each

surface was fitted to the five median values. Axes are scaled in impulses per second (imp/s).
substantially before contact with the target. Thus, it
seems unlikely that these neurons are involved in pre-
paring the muscles involved for push motor actions.
The activity in the SC most probably represents feed-
back about the force of the active muscles during inter-
action with the target. This view is supported by our find-
ing that push strength correlates with the discharge rate
of some of the neurons. It is well known that the SC in
primates receives somatosensory projections at least
from the spinal cord (spinotectal) and from the somato-
sensory areas of the parietal cortex (Wiberg et al., 1987;
Glickstein, 2003). So far, only receptive fields to passive
cutaneous stimulation have been reported in the collicu-
lus (Clemo and Stein, 1991; Wallace and Stein, 1996).
Interestingly, in our study of behaving monkeys, a sig-
nificantly higher number of neurons were activated by
possibly proprioceptive inputs (passively lifting the
arm) than by cutaneous inputs (mechanical stimulation
of the body surface, the palms and the fingers). But
most importantly, even more neurons in the behaving
monkey were active during self-generated propriocep-
tive stimulation. Moreover, the activity profile of the
somatosensory-motor SC neurons demonstrates high
similarity to that of the Golgi tendon organ, the muscle
receptor that may provide information on the stretch of
the active muscles to the SC somatosensory-motor neu-
rons. The Golgi tendon organ is silent during natural
physiological extension of the muscles and can be ac-
tivated with external passive stretch or during active
muscle contractions. This receptor characteristically
discharges more vigorously during active muscle
contraction than during passive stretch (Houk and Hen-
neman, 1967; Hunt, 1974). This is exactly what we de-
scribe above for the somatosensory-motor neurons in
the SC.

Can we see any similarity with the well-known eye
movement-related neurons in the SC? Clearly, high
discharge during active fixation and absent or weak
discharge during movement is very reminiscent of the
so-called fixation neurons, which are tonically active
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during visual fixation of a target and pause during sac-
cades (Munoz and Wurtz, 1993; Bergeron and Guitton,
2002; Choi and Guitton, 2006). Is this as far as the simi-
larity goes? If one considers, as an alternative explana-
tion of the fixation neurons, that they can encode small
position errors around the fovea, the function of the eye
movement-related neurons may not be such a dramatic
departure from the function of the somatosensory-
motor neurons. In particular the range of position errors
for fixation cells can extend into the ipsilateral visual
field, and cells with fixation-related activity can be found
at more caudal sites as well as at the rostral pole of the
SC. Our experiments show, however, that using skeleto-
motor, in addition to the widely applied oculomotor, par-
adigms reveals additional functional loops incorporat-
ing the SC. Somatosensory-motor neurons in SC are
most active during interaction with the target; their dis-
charge rate is modulated by the spatial position of the
target as well as the force that is exerted. These neurons
can have preferred target location, even far in the visual
field ipsilateral to the recorded SC. The somatosensory-
motor neurons can be found over the entire extent of the
SC. In these respects they are very similar to skeletomo-
tor reach neurons in the SC of primates described by
Werner et al. (1997a, 1997b).

Experimental Procedures

Single-cell recordings were performed in the left and right superior

colliculus of two awake, behaving monkeys (Macaca mulatta) in vi-

sually guided reach paradigms. All procedures were carried out in

a way that minimized discomfort and pain of the animal and followed

the European Communities Council Directive of 24 November 1986

(S6 609 EEC) and the National Institutes of Health guidelines for

care and use of animals for experimental procedures.

Behavioral Paradigms

Paradigm A

The monkey was seated in a primate chair with his head fixed

straight ahead, facing a tangential, translucent screen at a distance

of 20 cm (screen size 80� 3 80�). The nonworking arm was loosely

restrained. During the task the monkey had to perform an arm move-

ment to touch a target located on the screen. These targets were po-

sitioned at the central fixation light and at up to eight locations on

a circle with a 5.4 cm radius (15� eccentricity) centered on the fixa-

tion point. A single trial of the visually guided reach task consisted

of five phases. (1) Fixation phase: a single trial started when the mon-

key used his hand to touch a metal bar (contralateral to the recorded

SC) positioned close to the hip. This resulted in the onset of a red

fixation light (diameter <1�) back-projected onto the center of the

screen, located at the monkey’s eye level. (2) Fixation + Cue phase:

during fixation, a peripheral reach target light was turned on. After

the reach target was illuminated, the animal had to maintain his

eye as well as his arm in the original position for a pseudorandomly

determined delay period (0.5–2.2 s). (3) Saccade phase: when the

central fixation light extinguished, the animal performed a saccade

to the peripheral reach target. (4) Reach phase: after another vari-

able delay, an auditory signal instructed the monkey to start the

reach movement to touch the foveated reach target. The release

of the touch bar (i.e., movement onset) as well as the contact with

the target (i.e., end of movement) caused a transistor-transistor logic

(TTL) pulse, which was used as a behavioral trigger event. (5) Con-

tact phase: the monkey had achieved the target and held the contact

with the target for up to 600 ms.

After discovering neurons in the SC that were active during the

contact phase, the experimental procedure was slightly changed

such that the animal not only had to hold the arm at the target, but

also had to press the target with variable forces for a variable

amount of time.
Paradigm B

In this visually guided arm movement task, the monkey had to reach

first to a central target, followed, after some delay, by one of up to

four (up, left, right, or low) peripheral targets (Figure 1). The targets

for hand movements were push buttons that required a force of ei-

ther 1.5 N or 6 N to close the contact. Each contained a red and

a green light emitting diode (LED). The five push buttons were inte-

grated in a translucent acrylic plate that was fixed in the vertical

plane 28.6 cm from the eyes of the monkey. The distance of each pe-

ripheral button from the central button was 9 cm. During all phases

of the visually guided arm movement task, the monkey had to fixate

on a stationary blue spot (diameter = 1.6�). To exclude the influence

of eye movements on neuronal activities, the trial was aborted im-

mediately if the animal broke fixation. A single trial of the visually

guided reach task consisted of ten phases. (1) Fixation + Cue phase:

the animal placed its hand at the start position close to the hip and

fixated on a blue spot on the screen. Then the central target turned

red immediately to cue the upcoming arm movement (duration

1000–1500 ms). (2) Reaction time 1: the central push button changed

to green to signal the monkey to perform a hand movement to the

central button. The time between the appearance of the green go

signal and the start of the arm movement is the reaction time 1

(<1000 ms). (3) Move phase 1: the monkey performed the first arm

movement to the central push button (<1000 ms). (4) Push phase

1: the animal pushed the central button without getting a new target

signal (300–600 ms). (5) Push 1 + Cue phase: one of the four periph-

eral push buttons turned red (500–1000 ms). (6) Reaction time 2: the

red peripheral push button changed to green to signal the monkey to

perform a hand movement to the green peripheral button. The time

between the appearance of the green go signal and the start of the

arm movement is the reaction time 2 (<1000 ms). (7) Move phase 2:

the monkey performed the second arm movement to the green

peripheral push button (<1000 ms). (8) Push phase 2: the animal

had to press the peripheral button until the green signal turned off

(300–600 ms). (9) Reaction time 3: this period ran from the extinction

of the green hold signal to the beginning of the movement back to the

start position (<1000 ms). (10) Move phase 3: the monkey placed his

hand back to its start position (<1000 ms). After successful comple-

tion of a trial, the animal got a drop of liquid reward. The computer-

controlled trials were presented in a pseudorandom order. The mon-

key had to perform at least ten trials toward each peripheral target.

Paradigm C

In this paradigm the monkey was conditioned to lift his arm between

the right and upper push buttons without touching them. After a last-

ing hold phase of 500–1400 ms, the monkey got a piece of fruit as

a reward. This arm hold test was applied in alternation with paradigm

B, in which the monkey had to push the buttons. The arm position

and the neuronal activity during the arm hold test were recorded

on a video recorder. Action potentials were subsequently counted

off line and used to calculate the neuronal activity, and the length

of the holding phase was estimated by counting the video frames

in which the arm was held aloft.

Animal Preparation

After training for the fixation and arm movement task, the monkeys

were surgically prepared for chronic neurophysiological recordings.

Each monkey was treated preoperatively with atropine (0.1%) and

initially anesthetized with ketamine hydrochloride (10 mg/kg i.m.).

Under general anesthesia (sodium pentobarbital 25 mg/kg i.v.) the

monkeys were implanted with a device for holding the head. For mon-

itoring the eye position, a scleral search coil was implanted according

to the method published by Judge et al. (1980) and connected to

a plug on the top of the scull. A recording chamber (19 mm in diame-

ter) was implanted over a craniotomy. The chamber was centered on

the midline over the occipital pole, tilted 45� backward from the ver-

tical to allow penetrations perpendicular to the surface of the SC in

a parasagittal plane. In the second monkey, the placement of the

cylinder was guided by nuclear magnetic resonance images, which

were taken from the animal before the first surgery. Analgesics and

antibiotics were applied postoperatively for 7 days.

Recording

Extracellular electrophysiological recordings of single neurons from

the intermediate and deep layers of the SC were carried out using
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tungsten microelectrodes (impedance 2–4 MU) positioned either by

a hydraulic single-electrode manipulator (Narishige) or by a multi-

electrode manipulator (Thomas Recording, Giessen, Germany).

The discrimination of individual action potentials was achieved in

real time with help of a computer-controlled multichannel spike

sorter (Plexon Inc., Dallas, TX). Time stamps for detected spikes

were stored at 10 ms resolution by the same computer which was

controlling the behavior of the animal.

Data Analysis

The neuronal activity recorded in the fixation phase was considered

as spontaneous activity. We defined a neuron as either a reach or

a somatosensory-motor unit if the neuronal firing rates during the

reach or the contact/push phases of the task were significantly

higher (p < 0.05) than those during the fixation phase (paired t

test). We compared, for each unit, whether its discharge rate during

contact with or push against one of the five different targets was

significantly higher than the mean of the other targets (one-way

ANOVA; p < 0.05). The target location with the highest contact/

push activity was defined as the preferred location.

The neuronal activities in the reach paradigm A were stored as

peristimulus time histograms (PSTH, bin width 20 ms). To eliminate

the trial-by-trial variation in the duration of different behavioral

phases, in paradigm B we divided each epoch into a fixed number

of bins that remained the same in each trial. The number of bins

for each epoch was chosen in such a way that one bin accounted

on average for w20 ms. (For example, the epoch of the first move-

ment, with a mean duration of 258 ms, was divided into 13 bins).

The actual time represented by such a bin could vary with the dura-

tion of the respective epoch in each trial. We call the resulting histo-

grams ‘‘relative time histograms’’ (RTH) (Stuphorn et al., 2000) (Fig-

ure 3). In the RTHs, the temporal relationship of the neuronal activity

to the various behavioral epochs becomes more evident than in the

peristimulus time histograms, which are aligned to only one of the

different phases of the task. The activities denote the firing rates in

impulses/second (imp/s).
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