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Abstract

To investigate determinants of symmetry of the monocular horizontal optokinetic reaction (hOKR) in vertebrates, we performed
behavioural studies in diurnal foveate, as well as nocturnal afoveate geckos. During binocular viewing hOKR gain was equal for move-
ment to the left or right, during monocular stimulation, all afoveate geckos (Lepidodactylus lugubris, Gekko gecko, Eublepharis macula-

rius) and the foveate Lygodactylus spp. exclusively reacted to temporo-nasal stimulation with stabilising head movements whereas in
Phelsuma madagascariensis a naso-temporal component of hOKR could be elicited albeit much weaker. Thus, neither the presence of
a fovea nor lifestyle seems to be decisive for a symmetrical monocular hOKR.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In all vertebrates the optokinetic reaction (OKR) ensures
a stable image of the environment on the retina during ego
and external motion. During OKR the eyes, head or even
the whole body move at nearly the same velocity and in the
same direction as the retinal stimulus. If stimulation is long
lasting these pursuit movements are interrupted by resetting
saccades in the opposite direction. Monocular horizontal
OKR (hOKR) varies in different vertebrates: Some species
have a largely symmetrical monocular hOKR where motion
in temporo-nasal (TN) and naso-temporal (NT) direction
elicits largely equal responses, e.g. rainbow trout (Klar &
Hoffmann, 2002), chameleon (Gioanni, Bennis, & Sanso-
netti, 1993; Tauber & Atkin, 1967); ferret (Hein, Courjon,
Flandrin, & Arzi, 1990); cat (e.g. Wood, Spear, & Braun,
1973; Distler & Hoffmann, 1992; Markner & Hoffmann,
1985), monkey (Kato, Hasegawa, Igarashi, Koike, & Kawa-
saki, 1986) and human (e.g. van den Berg & Collewijn, 1988).
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In other species, e.g. Butterflyfish (Fritsches & Marshall,
2002), frog (Katte & Hoffmann, 1980; Lazar, 1973), pigeon
(Fite, Reiner, & Hunt, 1979), chicken (Wallmann & Velez,
1985; Bonaventure, Kim, Jardon, & Yucel, 1992), rabbit
(Collewijn, 1975), rat (Hess, Precht, Reber, & Cazin, 1985)
and mouse (Grüsser-Cornehls & Böhm, 1988), monocular
hOKR is asymmetrical, i.e. motion in temporo-nasal direc-
tion elicits a larger response than in the opposite direction.

Several hypotheses to explain this diversity have been
put forward. The ‘‘fovea theory” proposed by Tauber
and Atkin (1968) proposes that foveate animals perform
a symmetrical monocular hOKR. The ‘‘decussation the-
ory” proposed by Fukuda and Tokita (1957) suggests the
decussation pattern of retinal axons as the key determinant
for a symmetrical monocular hOKR: the larger the amount
of ipsilaterally projecting retinofugal fibers the more sym-
metrical the monocular hOKR should be. Other authors
tried to correlate different lifestyles with the characteristics
of optomotor reflexes (e.g. Dieringer, Reichenberger, &
Graf, 1992; Fritsches & Marshall, 2002).

Generally lateral-eyed mammals without a fovea show
asymmetric monocular hOKR (e.g. rat, mouse, rabbit)
reaction in foveate and afoveate geckos, Vision Research (2008),

mailto:kph@neurobiologie.rub.de


2 O. Masseck et al. / Vision Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
whereas frontal-eyed mammals show symmetrical hOKR
independent of the presence of a fovea (e.g. ferret, cat,
monkey, human).

In all vertebrates tested so far, the neuronal substrate for
the hOKR involves pretectal structures and structures of the
accessory optic system. In sharks the corpus geniculatum
laterale and in rainbow trout the area pretectalis (APT) con-
tain direction-selective neurons, which code for all directions
of motion (shark: Masseck & Hoffmann, in press; rainbow
trout: Klar & Hoffmann, 2002). Thus in contrast to the
decussation theory many fish with their completely crossed
optic nerves perform a nearly symmetrical monocular
hOKR. In amphibians, reptiles and birds the nucleus lenti-
formis mesencephali (LM) has been identified as the visuo-
motor interface for OKR (frog: Fite, 1985; Katte &
Hoffmann, 1980; turtle: Fan, Weber, Pickard, Faber, &
Ariel, 1995; bird: Fite et al., 1979; Winterson & Brauth,
1985). Neurons in the LM code predominantly for temp-
oro-nasal motion; however also neurons which code for
other directions than ipsiversive (i.e. neurons of the left
LM code for leftwards movements, whereas neurons of the
right LM code for rightward motion) can be found.

In mammals neurons of the nucleus of the optic tract
and the dorsal terminal nucleus (NOT-DTN) code for ipsi-
versive horizontal stimulus movements, whereas neurons in
the medial and lateral terminal nucleus (MTN and LTN)
code for vertical directions.

Binocular projections from the visual cortex to the
NOT-DTN are responsible for a symmetrical monocular
hOKR (ferret: Klauer, Sengpiel, & Hoffmann, 1990; cat:
Wood et al., 1973) in mammals. As such corticopretectal
projections are absent in fish, amphibians, reptiles and
birds, the question of the cause for a monocular symmetry
in non-mammals arises.

In addition some differences between foveal vision (like
prey tracking) and gaze stabilization exist. Diurnal geckos
use foveal vision mainly for binocular prey fixation and not
for gaze stabilization. They can direct their highly movable
eyes forward to reach binocular vision (Röll, 2001). Fur-
thermore foveal tracking can not be performed separately
in the two eyes, e.g. chameleons were not able to follow
two prey items independently with their two eyes (Kirmse,
1988; Ott, 2001). In contrast hOKR can be executed inde-
pendently in the two eyes (Kirmse, 1988; Ott, 2001).

A study by Bellintani-Guardia and Ott (2002) revealed
that displaced ganglion cells projecting to the nBOR in the
foveate chameleon are evenly distributed throughout the
entire retina and have no retinotopic organization. As well
as in the chameleon in afoveate chicken ganglion cells from
the entire retina project to the nBOR (Reiner, Brecha, &
Karten, 1979). Thus a foveal involvement in generating
OKR or even in a symmetric monocular OKR seems
unlikely.

To date the optokinetic system has been studied in only
a few reptiles (gecko: Tauber & Atkin, 1968; turtle: Fite
et al., 1979; Ariel, 1997; chameleon: Gioanni et al., 1993;
Ott, 2001). For our investigation geckos were chosen.
Please cite this article in press as: Masseck, O. et al., The optokinetic
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Geckos are small lizards which live in tropical and sub-
tropical regions. Most of them (ca. 75%) are nocturnal.
Nocturnal geckos developed from primarily diurnal lizards
with pure cone retinae (Walls, 1934; Walls, 1942). The rod-
like photoreceptors of nocturnal geckos are actually mod-
ified cones (Tansley, 1964; Röll, 2000). However, some gen-
era became tertiarly diurnal again and transmuted their
visual cells back to cones. The retinae of primarily diurnal
lizards are usually characterized by centrally located foveae
either convexiclivate or more concaviclivate or shallow
(Röll, 2001). In geckos, foveae could only be demonstrated
in diurnal representatives (Underwood, 1951; Tansley,
1964; Röll, 2001). Here, foveation reaches its highest devel-
opment in the genera Gonatodes, Lygodactylus and Sph-
aerodactylus with concaviclivate foveae, whereas in
species of the genus Phelsuma the foveae are shallow and
less specialized. Eyes of both the strictly nocturnal geckos
(e.g. of the genera Coleonyx, Gekko, Paroedura, Uroplatus)
and the diurno-nocturnal species (e.g. Lepidodactylus)
completely lack foveae (Röll, 2001; Tansley, 1964; Under-
wood, 1951). However, nocturnal geckos exploit binocular
vision to enhance visual sensitivity (Röll, 2001). Diurnal
gekkonid species have retained binocular vision from their
nocturnal ancestors and have developed foveae which are
consequently located not in the central but in the temporal
region of the retina (Röll, 2001). Species of the genus Lyg-

odactylus possess a binocular visual field of approximately
30 degrees (unpublished observations).

We measured optokinetic head movements under binocu-
lar and monocular conditions in diurnal foveate geckos and
nocturnal afoveate geckos to determine if the presence of a
fovea is a prerequisite for symmetrical monocular hOKR.

2. Materials and methods

2.1. Animals

Five different gecko genera were studied. Diurnal foveate geckos
belonged to the species Lygodactylus capensis (n = 1), L. bradfieldi

(n = 1), L. chobiensis (n = 1) L. arnoulthi (n = 2) (�40–50 mm) and Phel-

suma madagascariensis (n = 3) (25 cm). Nocturnal afoveate species were
Lepidodactylus lugubris (n = 5) (50 mm), Gekko gecko (n = 3) (35 cm)
and Eublepharis macularius (n = 4) (25–30 cm). All experiments were
approved by the local authorities (Regierungspräsidium Arnsberg) and
carried out in accordance with the Deutsche Tierschutzgesetz of 12 April
2001, the European Communities Council Directive of 24 November 1986
(S6 609 EEC) and NIH guidelines for care and use of animals for exper-
imental procedures.

All animals were kept in a terrarium at a twelve hour light cycle and
fed twice a week with house crickets. Drinking water enriched with cal-
cium, phosphate and vitamins was available ad libitum. All species of Lyg-

dactylus and Lepidodactylus were housed individually, whereas Phelsuma,
Eublepharis and Gekko were kept in groups.

2.2. Optokinetic measurements and analysis

Binocular and monocular measurements were performed using an
optokinetic drum covered with a black and white Julesz-random dot pat-
tern and moving in clockwise (CW) and counterclockwise (CCW) direc-
tion. Animals were placed in a Petri dish in the center of the optokinetic
drum (small geckos: ø = 30 cm, h = 29 cm; others: ø = 70 cm,
reaction in foveate and afoveate geckos, Vision Research (2008),



Fig. 1. Photomicrograph with a superimposed outline of the measured
angle a. Black arrow indicates direction of the smooth pursuit movement.
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h = 64 cm). For Lepidodactylus lugubris and Lygodactylus spp. stimulus
velocities of 20 and 50�/s were used. All other geckos were measured at
20, 30 and 40�/s. For the small geckos each dot of the random dot pattern
was 1.9� � 1.9� visual angle, whereas for all other geckos dots had a size of
1.6� � 1.6� visual angle.

For monocular measurements a black cap was reversibly attached on
the right or the left eye. Usually the left eye was stimulated during mon-
ocular viewing, however the right eye was always monocularly tested for
control. Head movements were video taped. One session consisted of a
30–60 s long lasting stimulation, in each session up to 10 consecutive pur-
suit movements were calculated. For analysis the angle between consecu-
tive head orientations during the pursuit movements was calculated by a
frame by frame (frame-rate of the video: 50 Hz) analysis of the video data
(Fig. 1).The angle was measured between the start position of the slow
phase eye-movement and its end position (before a resetting saccade
starts). The gain for each value was calculated as the head pursuit move-
ment angle divided by the duration of movement and stimulus velocity.
All in all fifty smooth pursuit head movements of L. capensis, L. bradfieldi,
L. chobiensis, L. arnoulthi and L .lugubris are included in the data analysis,
whereas for P. madagascariensis, G. gecko and E. macularius hundred bin-
ocular gain values are used to calculate the median. The median of the
gains was calculated and plotted in a boxplot diagram. To test for signif-
icant differences a t-test was used for normally distributed data; otherwise
a Mann–Whitney Rank Sum test was used (Sigma-Stat).
3. Results

3.1. Optokinetic measurements

Altogether 12 nocturnal and eight diurnal geckos were
measured. All geckos responded to the start of the stimulus
with a smooth pursuit movement, independent from binoc-
ular or monocular measurements and independent of
whether they possess a fovea or not.
3.2. Afoveate animals

3.2.1. Lepidodactylus lugubris

The optokinetic reactions were measured in five individ-
uals of the nocturnal afoveate L. lugubris. In the binocular
condition there was no significant difference between CW
and CCW stimulation at 20 or 50�/s (p = .798 and .452)
(Fig. 2A). However, the gain was significantly lower at
50�/s than at 20�/s (20�/s: gain = 1.0; 50�/s: gain = 0.9,
p 6 .003). In TN direction again at 20�/s the median of
the gain was significantly higher than at 50�/s (20�/s:
Please cite this article in press as: Masseck, O. et al., The optokinetic
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gain = 1.1; 50�/s: gain = 0.6, p 6 .001). During monocular
viewing, no OKR could be elicited by stimulation in NT
direction (Fig. 2B).

3.2.2. Eublepharis macularius

The data of four nocturnal afoveate E. macularius are
presented in Fig. 2C and D. During binocular stimulation
the median of the gain of OKR declined with increasing
stimulus velocity (20�/s: CW 0.9; CCW 0.9; 30�/s: CW
0.8, CCW 0.9; 40�/s: CW 0.8, CCW 0.7) (Fig. 2C). Only
at the highest stimulus velocity a significant difference in
the response to the two stimulus directions (p = .004)
existed. Gain was generally lower during monocular view-
ing at TN stimulation as in the binocular condition. At 30
and 40�/s the gain declined significantly (20�/s: 0.7, 30�/s:
0.6, 40�/s: 0.4, p = .025) during monocular stimulation.
No OKR could be elicited at all in NT direction (Fig. 2D).

3.2.3. Gekko gecko

A total of three individuals of the nocturnal afoveate
species G. gecko was tested. During binocular viewing these
animals showed equal OKR in CW and CCW direction at
all velocities (Fig. 2E). Again, gain clearly declined with
increasing stimulus velocity (20�/s: 0, 8; 30�/s: 0,7; 40�/s:
0, 6). This decrease was stronger than in the other species
investigated. Also in this species, monocular gain was lower
than binocular gain (20�/s: 0.7; 30�/s: 0.7; 40�/s: 0.5;
p 6 .026). Monocularly, OKR was asymmetric (Fig. 2F),
i.e. no OKR could be elicited by stimulation in the NT
direction.

3.3. Foveate animals

3.3.1. Lygodactylus spp.

Altogether five individuals of the diurnal foveate genus
Lygodactylus spp. were analysed. During binocular view-
ing, the gain was close to one at 20 and 50�/s during CW
and CCW stimulation. At 20�/s the response to CCW stim-
ulation was significantly higher (p < .002; median of the
gain = 1.3). As a gain higher than 1 is physiologically not
plausible this result may be due to the fact that the geckos
were not fixed, but could freely move inside the petri dish.
Therefore the relative distance of the gecko to the drum
wall influenced the perceived pattern velocity.

During monocular viewing all individuals of the genus
Lygodactylus showed a complete loss of OKR in NT direc-
tion (Fig. 3B). During NT stimulation the geckos some-
times followed the stimulus by running, but never showed
a regular head nystagmus. During the TN stimulation the
gain was comparable to the binocular conditions with a
median gain of 1 during 20�/s stimulation and a median
gain of 0.9 during a stimulation at 50�/s.

3.3.2. Phelsuma madagascariensis

The optokinetic reaction was measured also in three
diurnal foveate P. madagasacariensis (Fig. 3C). Binocu-
larly, this species showed a robust bidirectional OKR
reaction in foveate and afoveate geckos, Vision Research (2008),



ig. 2. Boxplot diagrams of binocular and monocular measurements of the gain of OKR in afoveate species. The 5% and 95% percentiles are displayed as
ots, boxplots show the range from the 25% percentile to the 75% percentile (A) Binocular condition L. lugubris, n = 50, (B) Monocular condition L.

gubris, n = 50, (C) Binocular condition E. macularius, n = 100, (D) Monocular condition E. macularius, n = 100, (E) Binocular condition G. gecko,
= 100, (F) Monocular condition G. gecko, n = 100. The median and the 5%, 25%, 50%, 75% and 95% percentiles are shown. CW, clockwise stimulation;
CW, counterclockwise stimulation; NT, naso-temporal stimulation; TN, temporo-nasal stimulation.

4 O. Masseck et al. / Vision Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
F
d
lu

n

C

Please cite this article in press as: Masseck, O. et al., The optokinetic reaction in foveate and afoveate geckos, Vision Research (2008),
doi:10.1016/j.visres.2007.12.004



Fig. 3. Boxplot diagrams of binocular and monocular measurements of the gain of OKR in foveate species. (A) Binocular condition Lygodactylus spp.,
n = 50. (B) Monocular condition Lygodactylus spp., n = 50, (C) Binocular condition P. madagascariensis, n = 100, (D) Monocular condition P.

madagasacariensis, TN: n = 100, NT: n = 30. Conventions as in Fig. 1. Stars indicate significant differences.
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at all velocities (gain at 20�/s. CW 0.9 CCW 0.9; 30�/s
CW 0.9, CCW 0.9; 40�/s CW 0.9, CCW 0.8). P. madaga-

scariensis was the only species investigated in the present
study that showed an optokinetic reaction during monoc-
ular stimulation in NT, albeit significantly weaker than
in TN direction (20�/s: TN 0.9, NT 0.6, 30�/s, p 6 .001
and 40�/s TN 0.8, NT 0.5, p 6 .001). A head nystagmus
in NT direction could not be elicited in each session thus
resulting in fewer measurements in NT than in TN direc-
tion. Only in 30% of the sessions during monocular stim-
ulation in NT direction a hOKR could be elicited at all,
clearly the NT component is not as reliable as the TN
component. Thus gain was calculated only from the peri-
ods showing OKR.

Thus summarizing our data we could show that under
binocular viewing conditions foveate as well as afoveate
geckos show largely symmetrical bidirectional optokinetic
reactions in horizontal directions with a gain close to 1.
In all but one species (P. madagascariensis) gain of hOKR
decreases with increasing stimulus velocity over a range of
20 to 50�/s.
Please cite this article in press as: Masseck, O. et al., The optokinetic
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Under monocular viewing conditions, two trends were
recognizable in our data. Generally, monocular gain in
TN direction was lower than binocular gain. A complete
loss of head nystagmus in NT direction was observed in
all afoveate geckos tested (L. lugubris, G. gecko, E. macula-

rius) as well as in the foveate genus Lygodactylus. By con-
trast, our second foveate species P. madagascariensis

displayed a clear hOKR in NT direction albeit at signifi-
cantly lower gain than in TN direction.

4. Discussion

4.1. Optokinetic measurements

Geckos generally stabilize gaze more by head (80%)
than by eye movements (Dieringer, Cochran, & Precht,
1983). Therefore in our study we concentrated on head
movements. All individuals of all species tested showed a
robust hOKR during binocular viewing. Monocularly all
individuals were asymmetric in their response, i.e. only
TN stimulation reliably elicited hOKR whereas NT stimu-
reaction in foveate and afoveate geckos, Vision Research (2008),
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lation yielded no response at all (Lygodactylus, L. lugubris,

G. gecko, E. macularius) or a rather weak response in some
of the sessions (P. madagascariensis). This monocular
asymmetry was independent of lifestyle (diurnal vs. noctur-
nal) or retinal spezialisation (foveate vs. afoveate). Espe-
cially the findings in the foveate diurnal Phelsuma and
Lygodactylus disagree with earlier results of Tauber and
Atkin (1968), who claimed that monocular symmetry is
related to foveation. It is unlikely that these different results
are caused by the different stimulus parameters used by
Tauber and Atkin (vertical black and white grating) and
in the present study (Julesz random dot pattern). As hOKR
could readily be elicited under binocular viewing condi-
tions. Also, during monocular viewing a rapid switch
between NT and TN led to an immediate beginning of an
optokinetic response in TN direction whereas in NT direc-
tion the hOKR was totally abolished (Lygodactylus,

L. lugubris, G. gecko, E. macularius) or diminished (P. mad-

agascariensis). All tested species could be judged as asym-
metric, although P. madagascariensis showed a weak NT
component. In a second preliminary approach, eye move-
ments were recorded in P. madagascariensis and G. gecko
using electrooculography (EOG). In head restrained animals
an optokinetic reaction could only be elicited in about 20% of
the sessions. Nevertheless, our data suggest a slight contribu-
tion of eye movements to gaze stabilization in geckos. Both
species tested showed optokinetic eye movements during
binocular and monocular stimulation. Monocular asymme-
try persisted in P. madagasacariensis and E. macularius

(p 6 .001), whereas in binocular measurements no differ-
ences for CW and CCW stimulation can be seen.

In lateral eyed animals (like geckos) monocular asym-
metry facilitates a suppression of optokinetic drive during
forward locomotion, as optic flow during forward locomo-
tion corresponds to stimulation in naso-temporal direction.

4.2. Neuronal substrate

A study by Northcutt and Butler (1974) using a degen-
eration method and silver staining revealed sparse ipsilat-
eral fiber projections to all main retinorecipient areas in
G. gecko. In turtle, only an ipsilateral projection to the
nucleus posterodorsalis, a retinofugal area, which has no
known function in OKN control was revealed using HRP
(Fan et al., 1995). Anyway, functionality of ipsilateral
fibers for the optokinetic reaction is in question, as at least
in frogs an ipsilateral retinal projection does not contribute
to it. After sagittal section of the optic chiasm no optoki-
netic reaction can be elicited (Dieringer & Precht, 1982).
Furthermore even G. gecko possess ipislateral retinofugal
fibers (Northcutt & Butler, 1974) and is monocularly not
able to generate hOKR in NT-direction.

Various electrophysiological and lesion studies suggest
that the nucleus lentiformis mesencephali (LM) of tetra-
podes other than mammals, the area pretectalis (APT) in
trout and the corpus geniculatum laterale in sharks are
involved as visuomotor interface in the generation of slow
Please cite this article in press as: Masseck, O. et al., The optokinetic
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following eye and head movements during hOKR (shark:
Masseck & Hoffmann, in press; trout: Klar & Hoffmann,
2002; frog: Katte & Hoffmann, 1980; Dieringer & Precht,
1982; turtle: Fite et al., 1979; Fan et al., 1995). In frog
15% of the LM neurons code for contraversive motion
(i.e.: 15% of the neurons in the right LM code for leftward
motion and vice versa for the right LM) (Katte & Hoff-
mann, 1980). In the mammalian NOT-DTN a strict prefer-
ence for ipsiversive stimulus movement has been shown in
all species investigated so far (e.g: rat: Precht & Strata,
1980; rabbit: Collewijn, 1975; cat: Hoffmann & Schopp-
mann, 1981; ferret: Klauer et al., 1990; opossum: Volchan
et al., 1989; monkey: Hoffmann, Distler, Erikson, &
Mader, 1988; Mustari & Fuchs, 1990).

In addition, the nucleus of the basal optic root
(nBOR), a major component of the accessory optic sys-
tem, is involved in gaze stabilization in amphibians, rep-
tiles and birds. Neurons in the nBOR code for all but
ipsiversive direction of motion (Dieringer & Precht,
1982; Fan et al., 1995). Together neurons in the LM
and nBOR represent all directions of motion. The LM
and nBOR are interconnected reciprocally with each
other (turtle: Fan et al., 1995). In pigeons electrical
stimulation of the LM modulates the firing rate in the
nBOR (Nogueira & Britto, 1991) and vice versa. How-
ever, the nBOR only modulates hOKR gain and is not
responsible for eliciting an horizontal optokinetic reac-
tion (turtle: Fite et al., 1979). An involvement of telen-
cephalic or tectal structures in the optokinetic reaction
of non-mammalian vertebrates seems unlikely (Hertzler
& Hayes, 1967; Hobbelen & Collewijn, 1971; Lazar,
1973).

Thus, a NT component of monocular hOKR could be
generated by a cooperation of the LM and nBOR. Alterna-
tively, even the LM alone could generate a weak NT com-
ponent, as in pigeons the LM is also activated by NT
stimulation (Winterson & Brauth, 1985).

5. Conclusion

Monocular symmetric hOKR in geckos is neither
related to retinal specializations nor to lifestyle. So our
data do not support the generality of the fovea theory
of Tauber and Atkin. The decussation theory can not
be verified nor refuted by our data, however it is ques-
tionable if sparse ipsilateral fiber connections as
described for reptiles could generate a naso-temporal
monocular hOKR at all.

Among non-mammalian vertebrates only some fish and
reptiles (e.g.: Chamaeleo melleri) display a symmetric mon-
ocular hOKR, possibly due to a different anatomical orga-
nisation (trout: Klar & Hoffmann, 2002, chameleon:
Tauber & Atkin, 1967; Gioanni et al., 1993).

Further behavioural and electrophysiological experi-
ments are needed to quantify the symmetry of monocular
hOKR in various species to clarify interspecies differences
of the underlying neuronal circuits.
reaction in foveate and afoveate geckos, Vision Research (2008),
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