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Abstract

Rhesus monkeys are widely used as animal models of human attention. Such research rests upon the assumption that similar mech-
anisms underlie attention in both species. Here, we directly compare the influence of low-level stimulus features on overt attention in
monkeys and humans under natural conditions. We recorded eye-movements in humans and rhesus monkeys during free-viewing of nat-
ural images. We find that intrinsic low-level features, such luminance-contrast, texture-contrast and saliency—as predicted by a standard
model, are elevated at fixation points in the majority of images. These correlative effects are not significantly different between species.
However, local image modifications affect both species differently: moderate modifications, which are in the range of natural fluctuations,
attract overt attention in monkeys significantly stronger than they do in humans. In addition, humans show a higher inter-individual
consistency regarding which locations they fixate than monkeys, in spite of the similarity for intrinsic low-level features. Taken together,
these data demonstrate that—under natural conditions—low-level stimulus features affect attention in monkeys and humans differently.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Rhesus monkeys are the experimental animal of choice
to study the physiological basis of human visual attention.
In these studies it is assumed that humans and monkeys
share common underlying mechanisms of visual process-
ing. Many aspects of the anatomy and functional organiza-
tion of the visual system are indeed similar in the two
species (Astafiev et al., 2003; Van Essen, Drury, Joshi, &
Miller, 1998). In a speed task categorizing novel complex
stimuli, monkeys perform with only slightly decreased
accuracy, but greater speed, than human observers (Fab-
re-Thorpe, Richard, & Thorpe, 1998; Thorpe, Fize, & Mar-
lot, 1996). These results reveal a striking similarity between
rhesus monkeys and humans regarding rapid processing of
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natural scenes. It remains to be investigated, however,
whether or not this similarity generalizes to prolonged
viewing under natural conditions, when attentional pro-
cesses and eye-movements take effect.

Covert and overt attention are widely studied using well-
controlled artificial stimuli. From such studies, several
brain regions have been implicated in the encoding of stim-
ulus saliency, i.e., the likelihood that the stimulus will
attract attention and possibly subsequent eye-movements.
Representations of saliency have been reported in several
brain regions projecting directly or indirectly to the occulo-
motor system, such as the pulvinar (Posner & Petersen,
1990; Robinson & Petersen, 1992) the frontal eye-fields
(Thompson, Bichot, & Schall, 1997), the superior colliculus
(Horwitz & Newsome, 1999; Kustov & Robinson, 1996;
McPeek & Keller, 2002; Posner & Petersen, 1990) and
the lateral interparietal cortex (Gottlieb, Kusunoki, &
Goldberg, 1998). Evidence for the encoding of saliency
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has also been found in visual areas as early in the visual
pathways as primary visual cortex (Li, 2002).

Adopting a free viewing visual search task that used
fragments of natural scenes, Mazer and Gallant (2003)
claim that saliency is encoded in V4 of rhesus monkeys.
Area V4 encodes a variety of stimulus features and activity
in this area is strongly modulated by attention. According
to Gallant and Mazer, saliency is computed across various
brain regions and area V4 serves to integrate information
from both higher (top–down processing) and lower visual
(bottom–up processing) areas. A key question concerns
how top–down scene interpretation and bottom–up stimu-
lus properties are weighted against each other under the
more natural viewing conditions in which no explicit
(search) task is involved.

Theoretical models of bottom–up attention are fre-
quently based on the concept of a so-called saliency map
(Koch & Ullman, 1985). Different feature channels (orien-
tation, color, luminance, etc.) are analyzed independently;
maps of local differences (contrasts) in these features are
summed up and attention is allocated to the location of
highest activity. Ever improving variants of this concept
describe human bottom–up attention with improved reli-
ability on the system level (Itti & Koch, 2000; Parkhurst,
Law, & Niebur, 2002; Tatler, Baddeley, & Gilchrist,
2005). In addition to local contrasts, deviations from the
global image structure are a strong predictor of visual
attention. This is most evidently seen in the phenomenon
of ‘‘pop-out’’ (Treisman & Gelade, 1980), in which an
odd item immediately attracts attention. This effect is not
caused by the item being more salient in terms of local fea-
tures, but because it differs from the global context. This
idea has entered saliency-map modeling recently as the
notion of ‘‘surprise’’ (Itti & Baldi, 2005), which is an infor-
mation-theoretic measure to define deviations from the
global (temporal) context as salient. The authors find that
‘‘surprise’’ better predicts human eye-movements in
dynamic scenes than classical saliency map models, which
only use local (in space and/or time) features. For static
natural scenes, however, saliency maps according to Koch
and Ullman’s (1985) notion of local feature-contrasts still
remain the predominant model of human overt attention.

Evidence for the validity of saliency map scheme arises
mainly from studies of human performance at the system
level. Few studies have investigated, however, the extent
to which different features are correlated with overt atten-
tion and still fewer have examined whether these effects
are directly causal in nature. In humans, several studies
(Krieger, Rentschler, Hauske, Schill, & Zetzsche, 2000;
Parkhurst & Niebur, 2003; Reinagel & Zador, 1999) have
found a correlation between fixation probability and lumi-
nance-contrast in natural scenes. Confirming this correla-
tive result, Einhäuser and König (2003) show that
luminance-contrast does not causally attract human overt
attention. Instead, higher order properties appear to guide
fixation in natural images. Taking one particular higher
order effect into account, Parkhurst and Niebur (2004)
provide an extension of the saliency map model to explain
the data of Einhäuser and König (2003). In their model, a
strong effect of a second order (or ‘‘texture-’’) contrast
dominates a residual effect of first order (‘‘luminance-’’)
contrast for human overt attention. In monkeys, eye-
movement studies with naturalistic stimuli are receiving
increasing interest (Sheinberg & Logothetis, 2001). Guo,
Robertson, Mahmoodi, Tadmor, and Young (2003)
present faces and scrambled versions thereof to rhesus
monkeys and conclude that the saliency of a specific facial
feature does not only depend on its low-level appearance,
but also on ‘‘higher levels of perceptual processing’’. In
summary, there is evidence for the importance of higher
order stimulus features to visual attention in humans
and—for special subsets of naturalistic stimuli—also in
monkeys. It is unclear, however, whether the observed
correlations of low-level stimulus features to overt atten-
tion in monkeys are qualitatively and quantitatively similar
to those in humans. Furthermore, it is an unresolved ques-
tion whether monkeys and humans employ the same pro-
cessing strategies for overt attention under natural
viewing conditions.

In the present study, we record eye-movements of
human subjects and rhesus monkeys while they freely view
natural scenes and modified versions thereof. We compare
the value of various stimulus features at fixation locations
to the values expected by chance. In addition, we quantify
to what extent the ‘‘classical’’ Itti and Koch (2000) saliency
map model predicts the data. To assess the influence of
local image features independent from their natural con-
text, we evaluate the effect of contrast modifications in nat-
ural scenes on overt attention. Finally, we analyze how well
the fixations of one individual predict the fixation of anoth-
er individual within and across species.
2. Methods

2.1. Stimuli

Stimuli for this study were based on 108 images of natural scenes,
which were taken with a Coolpix 995 (Nikon, Tokyo, Japan). Original res-
olution of the images was 2048 · 1536 in three colour channels. Images
were converted to greyscale by MatLab’s (Mathworks, Natick, MA,
USA) rgb2gray.m function using default settings and down-sampled to a
resolution of 1024 and 768 using bi-cubic interpolation. Twelve represen-
tative example images are shown in Fig. 1A. The complete dataset is avail-
able from the authors on request.
2.1.1. Modification

In addition to unmodified images, contrast-modified versions were also
presented. Modification was performed as first described in Einhäuser and
König (2003). To locally increase or decrease luminance-contrast, five
points (xi ,yi) were randomly chosen, such that each point had a distance
of at least 160 pixels (23.5�—all values in � refer to center) from the other
points and from the image boundary. A two-dimensional Gaussian

Giðx; yÞ ¼ exp � ðx�xiÞ2þðy�yiÞ2ð Þ
k2

� �
with k = 80 pixel (12�) was centered over

each point. Taking the maximum over Gi resulted in the mask
Gðx; yÞ :¼ maxi2f1,..,5g½Giðx; yÞ�. At each image point the original pixel

intensity I0(x ,y) was then modified to I (x,y) = I0 (x,y) + aG (x,y) ·



ig. 1. Stimuli. (A) Twelve examples out of the 108 basis images used in the
resent study. (B) Left: image modified with peak modification level
= �0.6; right: same stimuluswithmodificationsmarked bywhite circles at
distance of k (80 pixels) from the modification center. For details of
odification see Section 2.1.1. (C) Same image as in (B), but using peak
odification level a = �0.2. (D) Same image as in (B), but using peak
odification level a = +0.2. (E) Same image as in (B), but using
eak modification level a = +1.0. In (B–E) the white dashed rectangle
dicates the 600 · 400 pixel (76� · 55�) wide central region, which was used
r analysis. Note that this figure is intended only to illustrate the
odification procedure; printouts and screen images depend on the
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system and might differ from the actual stimulus.
(I0 (x ,y) � hI0i), where h.i denotes the mean over the image and a the peak
contrast modification level. If I (x ,y) exceeded the 8-bit range of possible
pixel values, the result was clamped to the maximum or minimum possible
value, respectively. Within a given stimulus, the modifications had the
same peak modification level, a (Figs. 1B–E). Eight different peak modifi-
cation levels were used ranging from �60 to �20% (locally decreased con-
trast) and 20 to 100% (locally increased contrast).

2.1.2. Presentation

For presentation of the stimuli we used the MatLab’s psychophysics
toolbox (Brainard, 1997; Pelli, 1997) on a Pentium 3 Laptop running
Windows ME. Stimuli were projected from the back on a transparent
screen with a black circular aperture (diameter: 110 cm) using a Nec
LT 157 (NEC Solutions, Itasca, IL) projector (resolution: 1024 · 768
pixel at 60 Hz). Each stimulus was presented for 6 s interleaved by
blanks of medium intensity and viewed at a distance of 50 cm. The image
spanned 133 · 100 cm, which corresponds to 106� · 90� of visual angle.
Since part of the field of view was obstructed by the setup, we only used
the central 600 · 400 pixels (76� · 55�) for analysis. As a further advan-
tage of this restriction, potential effects of the image boundaries cannot
confound the analysis. Note, that we take the fixations outside the ana-
lyzed region into account for analyses that count fixations. This means
e.g., if the first and the third fixation are inside the region, while the
2nd is not, the 3rd fixation would still be regarded as the 3rd fixation
on that stimulus and this particular stimulus would contribute no data
on the 2nd fixation.

While the mapping from real-world to image brightness might contain
unknown non-linearities imposed by the CCD-camera, the c-factor of the
projector was corrected for, ensuring a linear relation between pixel-values
and presented luminance. Peak luminance (‘‘white’’) on the screen was
240 cd/m2.

Stimulus presentation was separated into 18 sessions. In each session
54 stimuli were presented. Presentation was balanced such that

(1) Each of the nine modification levels (including unmodified)
occurred exactly six times per session.

(2) Each image was used in each modification level once in the course
of the whole experiment (18 sessions).

(3) 54 different images were used in each session. Half of the 108 imag-
es were used in odd sessions only, the other half in even sessions.

Since each basis image reoccurs only after at least 54 different stimuli and
the same subjects never views the same image at the same modification
level more than once, this balanced design minimizes potential effects of
stimulus repetitions.

2.2. Monkey subjects

Two rhesus monkeys (Macaca mulatta) were used for this experiment.
Each performed all 18 sessions (972 trials). To the best of our knowledge,
the monkeys had no prior exposure to naturalistic images in the laborato-
ry setup. Monkey N was head-fixed, while monkey C was not head-re-
strained for technical reasons. Neither before, nor during the period in
which the present experiments were performed, the monkeys were
involved in tasks dealing with natural visual stimuli. While monkey C
had been involved in eye–hand coordination experiments prior to the pres-
ent study, monkey N had received no task-specific training.

Monkeyswere rewardedwith a drop of water after each trial irrespective
of the eye-movements they performed. In the course of the experiment apple
juice was added to the water to keep motivation at an approximately con-
stant level. Fixation performance in calibration blocks between experimen-
tal sessions did not worsen noticeably, which indicates that monkeys
remained motivated throughout. Trial onset was triggered manually, as
soonas themonkeyhad stoppeddrinking the reward from the previous trial.
MonkeyN performed sessions 1–3 on the first day, sessions 4–12 on the sec-
ond day and sessions 13–18 fivemonths later.MonkeyCperformed sessions
1–13 on his first day and the remaining sessions the day after.
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Eye-position was monitored using the scleral search coil technique
(Judge, Richmond, & Chu, 1980) and the output of the eye monitor system
(Primelec, Regensdorf, Switzerland) was sampled at 75 Hz. The coordi-
nate transform from the coil’s output to screen coordinates was computed
analogously to Einhäuser and König (2003). Before each session monkeys
had to fixate points presented on the screen and were rewarded manually
for correct fixation. From these fixation points we computed the bi-linear
transform that yielded the best match between screen coordinates and coil
output. Comparison between the calibration trial before and after a pre-
sentation session was used to verify the stability of the recording.

All animal handling was performed in full compliance with the guide-
lines of the National Institutes of Health for the care and use of laboratory
animals and of the European Community (EUVD86/609/EEC).

2.3. Human subjects

Seven subjects (undergraduate students, three male, and four female)
with normal or corrected-to normal vision participated in the experiment.
Six subjects performed 6 sessions each—two subjects performed sessions
1–6 (CK, KF), two subjects sessions 7–12 (AN, IZ) and two subjects ses-
sions 13–18 (JB, TH) yielding 324 trials per subject. This yields equivalent
amounts of data for humans and monkeys and will allow us a stimulus-by-
stimulus comparison of species. One additional subject (SH) performed all
18 sessions (972 trials); from her data sessions 3 to 6 are missing due to
setup failure.

Human eye-position was recorded using a head-mountable ‘‘Eyelink I’’
eye-tracking system (SR Research, Mississauga, Ontario, Canada). Before
each session a calibration block was performed. The calibration protocol
was identical to the monkey experiment and was verified with the internal
calibration of the Eyelink system. Subjects used a chin-rest to maintain a
constant distance from the screen and were allowed to have a break
between sessions if they desired. Subjects were instructed to ‘‘study the
images carefully.’’ In separate control experiments we demonstrate that
instructions of ‘‘free viewing’’ and ‘‘study carefully’’ yield equivalent
results with respect to the correlation of luminance-contrast and the selec-
tion of fixation points (Steinwender et al., unpublished results).

The experiment conformed to national and institutional guidelines for
experiments with human subjects and with the Declaration of Helsinki. All
subjects gave written informed consent to participate in the study.

2.4. Data analysis

2.4.1. Luminance-contrast

In line with earlier studies and as the straightforward generalization of
two-point contrast, we defined luminance-contrast at a point as the stan-
dard-deviation of luminance in an 80 · 80 pixel (12.5� · 12.5�) region
around that point normalized by the mean luminance of the image. Note
that changes to the exact size of the region (we also tested 40 · 40 pixels,
6� · 6�) and the use of a different normalization method (we also tested
normalization by the patch mean) had no qualitative effect on the results.

2.4.2. Texture-contrast

A recent model (Parkhurst & Niebur, 2004) suggests that ‘‘texture-con-
trast,’’ not luminance-contrast, dominates the guidance of overt attention
in grey-scale images. To define texture-contrast without any further model
assumptions, we canonically generalized our definition of luminance-
contrast. We defined the texture-contrast at a given location as the stan-
dard-deviation of luminance-contrast in an 80 · 80 patch around the point
normalized by the mean luminance-contrast of the image.

2.4.3. IK-saliency

To compare our results to established computational models of overt
attention, we computed a saliency map for each stimulus. We used the
model of Itti and Koch (2000), which we—as there is no color in our stim-
uli—restricted to the orientation and luminance channel. Both channels
were used at equal weight and the parameters were set as originally pub-
lished. This results in a saliency map, which we rescaled linearly to take
values between 0 and 1 for each stimulus. To avoid confusion with the
saliency measures that we define for each feature below (Section 2.4.7),
we will hereafter refer to this measure as ‘‘IK-saliency’’ throughout. For
analysis we treat IK-saliency analogously to the other features.

2.4.4. Modification

All the measures defined so far (luminance-contrast, texture-contrast,
and IK-saliency) are defined agnostic about the modifications that we
imposed to the modified stimuli. As additional feature, we measured the
‘‘modification’’ aG (x ,y) and treated it in analogy to the intrinsic features
(luminance-contrast, texture-contrast, and IK-saliency). This provides us
with a measure in how far a deliberate deviation from the natural stimulus
influences overt attention behavior.

2.4.5. Baseline (‘‘control’’) contrasts

To achieve an unbiased estimate of the distribution a certain measure
(luminance-contrast, texture-contrast, IK-saliency or modification) would
take at fixation points, if fixation and this measure were unrelated, we
defined the following baseline: we defined as ‘‘control fixations’’ all fixa-
tions that result from all presentations of all stimuli in the same subject
or species. For analyses in which only unmodified images were concerned,
control fixations were taken from all unmodified stimuli only. For each
given stimulus we compared the measure at the fixations in that particular
stimulus (‘‘actual’’ fixations) to the same measure at the control fixations.
For each stimulus, the medians at actual/control fixations are then
referred to as actual/control luminance-contrast, actual/control texture-
contrast, actual/control IK-saliency, and actual/control modification,
respectively. If the actual measure significantly differs from the control
measure, the measure is related to the likelihood of fixation. Note that
we take the control fixations from all stimuli including the actual stimulus.
Although excluding the actual fixations from the control set would seem a
cleaner definition, this difference is only a matter of concern for small
datasets. Since in our case actual fixations account only for 1/108 (analysis
of unmodified stimuli alone) or 1/972 (other analyses) of the control fixa-
tions, we may safely include them in the control set for computational
efficiency.

2.4.6. Saliency measures

To quantify the effect of luminance-contrast further, we defined the
saliency of luminance-contrast (SLC) as the difference between actual lumi-
nance-contrast and control luminance-contrast. If luminance-contrast was
not related to fixations, this measure, on average, would not be different
from 0. This is so because actual luminance-contrast would not differ from
control luminance-contrast. If SLC is positive, luminance-contrast along
fixation points will be larger than predicted if luminance-contrast had
no effect. If SLC is negative, luminance-contrast along fixation points will
be smaller than one would predict if luminance-contrast had no effect. In
complete analogy to SLC we defined the saliency of texture-contrast (STC)
and the saliency of IK-saliency (SIK). One should note however, that SLC,
STC, and SIK are correlative measures. Positive SLC/STC/SIK does not
imply that luminance-/texture-contrast, as such, causally attracts overt
attention. It only implies that luminance-/texture-contrast is higher at fix-
ated locations than would be expected from a random distribution of fix-
ation points, which may also be caused by other features that are
correlated to both attention and luminance-/texture-contrast.

In addition, we directly assessed the saliency of the modification
(Smod). In analogy to SLC, STC, and SIK we defined S0

mod as difference
between actual and control modification (i.e., between the median of mod-
ifications aG (x ,y)) at the actual fixations compared to the median of mod-
ifications at control fixations. Since the total modification in a stimulus
scales linearly with the peak modification level a, this measure would
depend trivially on a. Hence, we normalized by the peak modification level
Smod ¼ S0

mod=a. An additional effect of the normalization is that for all val-
ues of a (positive and negative), a positive Smod implies that a modification
attracts overt attention. This is consistent with the definitions of SLC, STC,
and SIK and justifies the definition of Smod as the saliency of a
modification.
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2.4.7. Statistical analysis

For the saliency measures SLC, STC, SIK, and Smod we assume a normal
distribution across images. Hence, we performed a t-test to test whether
the mean of each of these measures across unmodified images was different
from 0. A t-test was also used to test whether these means across images
differ between species. In all cases two-tailed tests were used.

When comparing the saliency measures for modified images, we must
consider two factors, the species and the peak modification level, a. Since
different modifications of the same image are not independent from each
other, we treated a as a repeated measurement factor. Hence, we per-
formed a general linear model repeated measures analysis of variance
(with each basis image corresponding to one level) to test whether there
are significant differences in our saliency measures between subjects,
and/or between peak modification levels. If we found such a difference
we computed post hoc comparisons of interest. Furthermore, if we did
not find a dependence on a factor we pooled over this factor for further
testing.

In cases where normal distributions cannot be assumed, we compared
the medians of two distributions by using a Wilcoxon-test (ranked sign-
test). This measure is justified for comparing actual contrasts versus con-
trol contrasts. While the Wilcoxon-test takes the size of the values in the
distributions into account, we may also compare the distribution medians
using a sign-test. Here, we ask whether an actual contrast (luminance- or
texture-) is larger (or smaller) than the respective control contrast in a sig-
nificant number of images. This means we test the following null hypoth-
esis: That there are as many images in which actual contrast is larger than
control contrast as there are images in which actual contrast is smaller
than control contrast. Since this measure is independent of the size of
the effect, it does not weight different images independently. Hence, it is
the most robust measure with respect to any potential particularities of
a given stimuli.

For the GLM repeated measures ANOVA and its post hoc tests, the
SAS 8.02 (SAS-Institute Inc., Cary, NC, USA) Software package was
used. All other tests were performed using MatLab’s statistics toolbox.

2.4.8. ROC analysis

Tatler et al. (2005) recently suggested a measure to assess the saliency
of a feature based on signal detection theory, the area under the receiver-
operating-characteristics (ROC) curve. We computed the ROCs for each
feature and each peak modification level separately: for each stimulus
we normalized the feature values from 0 to 1; we varied a threshold and
determined the fraction of fixations that fall on pixels (or bins in case of
IK-saliency) above threshold (‘‘hits’’). This was compared to the fraction
of pixels (bins) above threshold without fixations (‘‘false alarms’’). Hits
and false alarms are accumulated across all stimuli. Plotting hits vs. false
alarms results in the ROC. If the ROC is the diagonal (ROC-area: 0.5), the
respective feature does not allow any prediction on fixations. If curve is
above the diagonal (ROC-area large 0.5), fixated points can be partly dis-
criminated from non-fixated points on basis of this feature. Perfect dis-
crimination on the basis of the feature under investigation would yield
an ROC area of 1.

To derive confidence limits we apply a bootstrap technique: we gener-
ate 1000 surrogate data sets by drawing with replacement from the stimuli
used to compute the respective ROC. We compute ROC areas for these
surrogate data and determine the confidence limits such that 99% of this
surrogate areas are within these limits.

2.4.9. Model- and feature independent distance measure

To obtain a model-independent measure of how well humans and
monkeys tend to direct their attention to similar locations in each image,
we measured the Euclidian distance between fixation locations within and
across species. We compared the fixation locations for each pair of sub-
jects that share common stimuli (N to C, all monkeys to all humans,
CK to KF, AN to IZ, JB to TH, and all to SH). To account for the effects
of prolonged viewing, we performed this comparison separately for each
fixation on each stimulus, i.e., we compared the 1st fixations, 2nd fixa-
tions, etc. separately. For each pair of subjects the distances obtained
are first averaged over all stimuli, which both subjects contribute data
for. This measure could still be confounded by biases that are not
image-specific (like e.g., one subject tends to look to the right, the other
more to the left). Hence, we subtracted the obtained average distance from
and divided it by the mean distance of all respective fixations (separated
according to 1st, 2nd, . . .fixation) of the same pair of subjects. For each
pair of subjects this ‘‘normalized distance’’ yields the fraction of how much
the distance between corresponding fixations is smaller than expected by
their general biases. Hence, the normalized distance provides a reasonable,
model-independent measure of how much any two subjects tend to look at
the same items, irrespective of their low-level features.

3. Results

3.1. Image statistics

We measured eye-movements of 2 monkeys and 7
human subjects, while they were freely viewing images of
natural scenes and similar images that were locally modi-
fied in contrast. To relate the imposed contrast modifica-
tions to contrast fluctuations naturally occurring in
natural scenes, we first determined the mean luminance-
contrast of each unmodified image. The average lumi-
nance-contrast across all images was 0.28 (SD over images:
0.09). Across all images, at 63% (SD: 19%) of pixels the
luminance-contrast was within 20% of the mean lumi-
nance-contrast in the image, at 90% (SD: 12%) within
40% of the mean and at 97% (SD: 5%) within 60% of the
mean luminance-contrast. Based on these numbers we
can define, that a peak modification of ±20% is well within
the range of natural contrast fluctuations, while a modifica-
tion of ±60% or stronger is outside the range of natural
contrast fluctuations. Throughout the paper, we conse-
quently will refer to peak modifications of ±20% as ‘‘mod-
ifications in the range of natural contrast fluctuations.’’

3.2. Eye-tracking data

The analysis was based on successfully recorded fixation
data of 1944 trials from monkeys (2 monkeys · 18 ses-
sions · 54 trials/session) and 2700 trials from human sub-
jects (6 · 6 · 54 + 1 · 14 · 54). These trials resulted in a
total of 32,225 fixations in humans and 33,695 fixations
in monkeys, yielding on average 11.9 fixations per trial in
humans and 17.3 fixations per trial in monkeys. On average
a fixation lasted 370 ± 293 ms (mean ± SD over all fixa-
tions) in humans, and 294 ± 215 ms in monkeys. This
implies that fixations account for 74% (human) and 85%
(monkey) of total stimulus presentation time (6 s per stim-
ulus). These data justify restriction of the analysis to the
points of eye fixation. The average distance of subsequent
fixation points on the screen was 95 pixels (14�) in monkeys
and 127 pixels (19�) in humans. Both distances were larger
than the radius of the contrast modifications, which was 80
pixels (12.5�). This justifies treating subsequent fixations
independently with respect to the analysis of modifications.

To avoid a potential confound due to obstruction of the
outermost regions of the stimulus by the setup, higher



W. Einhäuser et al. / Vision Research 46 (2006) 1194–1209 1199
order non-linearities of the eye-tracking systems or head-
movement artifacts (humans and monkey C), we restricted
analysis to fixations within a 600 · 400 pixel (76� · 55�)
central stimulus region. This analyzed region contained
92% (29,725) of all fixations in humans and 75% (25,135)
in monkeys. The comparably low number for monkeys
mainly results from them looking at parts of the setup at
the fringes of their field of view, as they were rewarded irre-
spective of whether or not they actually looked at the stim-
ulus. However, 99.7% (humans) and 97.7% (monkeys) of
trials contained at least one fixation in the analyzed region;
in 98.2% (humans) and 79.5% (monkeys) of trials more
than half of the fixations were in the analyzed region. These
data justify restriction of the analysis to the central region
of the image.

To test whether the overall properties of eye-movement
remained constant throughout the experiment, we com-
pared the first and last session of each recording day. We
did not find a difference in fixation duration between the
first and last session in either species (humans, p = 0.51,
t-test; monkeys, p = 0.53, t-test). Furthermore, the fraction
of fixations in the analysed region also remained constant
between the first and last session of each day (p = 0.93
for humans and p = 0.33 for monkeys). Hence the spatial
and temporal properties of eye-movements can be assumed
to be constant. This furthermore suggests that the motiva-
tional state of a subject remained about constant through-
out the experiment.

We tested whether there is a general bias in fixation to
one side of the screen. While—averaged over all fixa-
tions—three humans had a center of mass of fixation
slightly right from the center, for the four others the cen-
ter was slightly left and for no subject the deviation was
larger than 4.9�. The same held for monkeys: while one
monkey had a slight bias to the left (4.6�) the other mon-
key had about the same bias to the right (5.7�). We
observed a slight vertical bias above the midline in mon-
keys (5.3� ± 2.3�) and in humans (6.0� ± 2.7�). The
between-species difference was non-significant (p = 0.74,
t-test). Thus, we found no significance in the bias between
the two species. The systematic deviation from the center
of the display was small compared to size of the analysed
region (76� · 55�).

These data also show, however, that monkey fixations
are different from human fixations in several respects,
including duration and spatial distribution. This justifies
the use of the ‘‘saliency’’ measures (SLC, STC, SIK, and
Smod), which use an intra-species control and are thus
insensitive to such inter-species differences, to perform an
unbiased comparison between monkeys and humans.

3.3. Effects of luminance-contrast in experiments using

unmodified images

In a first analysis we tested whether there is a relation
between luminance-contrast and the likelihood of fixation
at a given location.
The left panel of Fig. 2A displays all fixations recorded
from all monkeys on the unmodified stimulus (green
points). Since these fixations were actually recorded on that
particular stimulus, we refer to them as ‘‘actual’’ fixations.
The red points in the same panel show the fixations of all
monkeys pooled over all unmodified stimuli, i.e., fixations
unrelated to this particular stimulus. The image properties
at these ‘‘control fixations’’ serve as the baseline for analy-
sis. The right panel of Fig. 2A shows the corresponding
data for all human subjects. It is evident that the horizontal
spread of control fixations is larger in humans than in mon-
keys (horizontal standard deviation of position: 106 pixels
(16�) in monkey; 143 pixels (21�) in human). This further
justifies the use of control fixations within species (rather
than across) as baseline.

Fig. 2B shows the measure of the distribution of lumi-
nance-contrast at the position of actual and control fixa-
tions. The non-Gaussian shape of the control distribution
suggests the median (and not the mean) should be used
to summarize the distribution in a single value. This is
why, we use these medians as ‘‘actual luminance-contrast’’
and ‘‘control luminance-contrast,’’ respectively. Please note
that the control luminance-contrast was highly correlated
to the mean luminance-contrast in the analyzed region of
the image for monkeys (r = 0.979) as well as for humans
(r = 0.989), which shows that our analysis is not critically
dependent on the choice of this baseline. For the example
image the actual luminance-contrast in monkeys (0.253,
green line in Fig. 2B) was larger than the control lumi-
nance-contrast (0.246, red line). The same relation held
for humans (Fig. 2B, right). This trend was conserved for
the majority of images in both species. In monkeys, actual
luminance-contrast was larger than control in 69 images
and smaller in 39 images (Fig. 2C, left). In humans this
relation was 74–34 images (Fig. 2C, right). Using a sign-
test we tested whether the number of images in which actu-
al contrast was larger than control, was significantly larger
than the number of images in which the opposite relation
held. This means we tested against the null hypothesis that
in an equal amount of images the actual contrast is greater
than the control contrast and vice versa. We found this
number to be highly significant in both species (human:
p = 0.0002; monkey: p = 0.005). In addition, we tested by
a ranked sign-test (Wilcoxon-test) whether the medians of
the distributions differed significantly. In humans the medi-
an of actual contrast was 0.285 and significantly larger than
the median of control contrast of 0.282 (p = 0.0009, Wilco-
xon-test) and the same was true for monkeys (0.290 vs.
0.286, p = 0.002). In conclusion, pooled over subjects we
found a consistent relationship between luminance-con-
trast and selection of fixation points in both species.

Next, we evaluated whether the observed effect of lumi-
nance-contrast was consistent among individual subjects.
We therefore performed the same analysis for each individ-
ual, i.e., we computed actual fixations and control fixations
separately for each subject. Both monkeys showed a very
similar quantitative effect: actual contrast was larger than
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control contrast in 67 (monkey N) and 61 (monkey C) out
of the 108 images (Fig. 2D, left). In monkey N both afore-
mentioned tests yielded significant results (sign-test:
p = 0.02, Wilcoxon-test: p = 0.002). In monkey C the
hypothesis that an equal number of images shows higher
actual than control luminance-contrast could not be fully
rejected (p = 0.12, sign-test). However, the medians were
also significantly different in this monkey (p = 0.03, Wilco-
xon-test).

Humans showed a larger inter-subject variation than
monkeys. However, no subject showed a tendency for con-
trol contrast to be larger than actual contrast in a significant
fraction of images. Subject TH took theminimum valuewith
actual luminance-contrast being smaller than control lumi-
nance-contrast in 17 out of 36 images; in all other subjects
this relation held for at least half of the images. Three sub-
jects (AN, IZ, andTH)were at about chance level, i.e., actual
contrast was larger than control in approximately half the
images (50% ± 1image, p > 0.86, sign-test, Fig. 2D, right).
In three of the remaining subjects (CK, JB, and SH) actual
contrast was larger than control in a significant fraction of
images (p = 0.0001, p = 0.03, and p = 0.0001, respectively,
sign-test). The medians were also significantly different for
subjects CK and SH (p < 0.001, Wilcoxon-test).

For the interpretation of inter-subject variability in
humans, one has to note that—with the exception of SH—
humans were tested only on a small number of unmodified
images (6 sessions · 6 unmodified images/session = 36
unmodified images) as compared to the monkey subjects
and human subject SH (108 unmodified images). However,
this does not imply that subject SH biases the population
analysis: with the exception of 24/108 unmodified images,
in which no data from SH are available, three human sub-
jects (SH and two others) contributed data to each image
of the population analysis. This allows us to conclude that
both humans andmonkeys tend to fixate regions of high con-
trast in a majority of unmodified images.

To further quantify relation of luminance-contrast to
fixation and to compare this effect between the species,
we use the saliency measure SLC, which we defined as dif-
ference between actual and control luminance-contrast.
In unmodified images the mean SLC across images was
0.0070 in monkeys and 0.0057 in humans (Fig. 2E). Consis-
tent with the Wilcoxon-test on the medians above, the
means of both SLC are also significantly different from 0
(p = 0.004, p = 0.006, respectively). In addition SLC allows
us to directly probe the difference between human and
monkey. We found no difference between mean SLC in
monkeys and mean SLC in humans (p = 0.67, t-test). In
summary, we confirmed earlier results that luminance-con-
trast was related to fixation in human subjects. In addition,
we showed that the same is true for monkeys. Finally, we
demonstrated that for this correlative measure no differ-
ence can be observed between the two species.

3.4. Effect of texture-contrast in experiments using

unmodified images

Since a recent modelling study (Parkhurst & Niebur,
2004) had suggested that texture-contrast was more
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relevant to the guidance of human overt attention than
luminance-contrast, we measured the relation between tex-
ture-contrast, which we defined canonically as 2nd order
luminance-contrast, and fixation. We found in monkeys
and in humans that actual texture-contrast was larger than
control texture-contrast in the majority of images
(Fig. 3A). This majority was significant in humans (72:36,
p = 0.0008, sign-test). Although we found the same trend
for monkeys the effect was not significant (60:48,
p = 0.29, sign-test). A test on the difference between the
medians was also in line with this result: in humans the
median actual texture-contrast of 0.076 was significantly
larger than median control texture-contrast of 0.069
(p = 0.0003, Wilcoxon-test), while these medians were not
significantly different in monkeys (0.074 vs. 0.069,
p = 0.15). By directly comparing actual to control tex-
ture-contrast we therefore only found a significant effect
in humans, but not in monkeys.

With respect to individual subjects, we found that actual
texture-contrast was larger than control in approximately
the same fraction of images in each monkey (Fig. 3B, left).
This effect was not significant in either monkey (p = 0.21
Fig. 3. Texture-contrast. (A) Control texture-contrast plotted versus
actual texture-contrast (analogous comparison to Fig. 2C for texture-
contrast). For images with data-points below the diagonal actual texture-
contrast is larger than control texture-contrast. (B) Percentage of images
in which actual texture-contrast is larger than control texture-contrast
(green), or smaller (red). Analogous to Fig. 2D for texture-contrast.
Significance levels refer to sign-test. (C) Analogous to Fig. 2E for texture-
contrast, mean and standard-error across images for saliency of texture-
contrast (STC).
and p = 0.33, sign-test, monkey N and C, respectively).
In humans we found a significant difference for two indi-
viduals (p = 0.004 and 0.001, sign-test, in KF and SH,
respectively). No subject had a larger number of images
with actual texture-contrast smaller than in the control
images (Fig. 3B, right). This result confirms an effect of tex-
ture-contrast in humans, while a significant effect cannot be
revealed for monkeys using a sign-test.

To directly compare both species, we defined the salien-
cy of texture-contrast (STC) in an analogous fashion to SLC
as the difference of actual texture-contrast minus control
texture-contrast (Fig. 3C). Mean STC was significantly larg-
er than 0 in humans (p = 0.001, t-test) and also achieved
significance in monkeys (p = 0.04, t-test). The latter may
indicate that a small effect of texture-contrast is also pres-
ent in monkeys. Indeed, a direct comparison between spe-
cies could not reject the hypothesis that STC is identical for
humans and for monkeys (p = 0.18, t-test). In conclusion,
although there seems to be some indication of a quantita-
tive difference between the two species, the analysis of
unmodified images did not reveal any significant difference
between monkeys and humans.

3.5. Effects of IK-saliency in experiments using unmodified

images

Most contemporary models of bottom–up saliency are
based on the architecture proposed in Itti and Koch
(2000). Hence, we repeated the analysis done for lumi-
nance-contrast and texture-contrast on an implementation
of this model that is restricted to the luminance and orien-
tation channel. In monkeys and humans significantly more
images have higher actual IK-saliency than control IK-sa-
liency (humans: 73:35; monkeys: 71:35 (remaining 2 imag-
es show no difference); p < 10�3 sign-test; Fig. 4A). The
medians across images are also significantly between actu-
al and control IK-saliency (p < 10�4, Wilcoxon-test).
Regarding individuals, for both monkeys and for all but
one human subject (TH) more images have higher actual
IK-saliency than control IK-saliency (Fig. 4B). This differ-
ence is significant in monkey N (p = 0.009, sign-test) and
in humans KF (p = 0.03) and SH (p < 10�4). Wilcoxon-
tests are consistent with this result as they reveal median
actual IK-saliency to be larger than control in both mon-
keys (N, p < 10�4; C, p = 0.02) and in two humans (KF,
p = 0.001; SH, p < 10�4). Computing SIK in analogy to
SLC and STC shows—consistent with the aforementioned
Wilcoxon-test on medians—the means of SIK to be signif-
icantly different from 0 (p < 10�4, t-test). As with SLC and
STC there is no significant difference between humans and
monkeys for SIK (p = 0.19, t-test). In summary—although
IK-saliency considers orientation and different spatial
scales—the results on IK-Saliency are well in line with
the results obtained for luminance-contrast alone. In par-
ticular, there is a correlation to overt attention and there
are no significant differences between humans and
monkeys.
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3.6. Modified images

Does the apparent similarity between species observed
for unmodified images imply that the underlying mecha-
nisms that guide overt attention are similar in both species?
To address the question in more detail, we analyzed the
data from the stimuli that were locally modified in contrast.
Fig. 5A shows the actual fixations of monkeys and human
subjects on such a modified stimulus. The control fixations
were in this case taken from all trials (modified and unmod-
ified) within the same species. First, we performed the same
analysis as for the unmodified images, i.e., we computed
the correlative measures SLC and STC in dependence on
peak modification levels. In addition, we computed the
saliency of the modifications (Smod). This measure is inde-
pendent of those effects of luminance-contrast and tex-
ture-contrast on overt attention that arise from
correlations of both to a third local property. Therefore,
it better captures the effect of the modification than the
intrinsic measures SLC, STC, and SIK.

For statistical analysis of our saliency measures (SLC,
STC, and Smod) we performed a general linear model repeat-
ed measures analysis of variance (GLM-repeated measures
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ANOVA) across images on the factor species (monkey vs.
human) and the repeated measures factor peak modifica-
tion level (a = �0.6, . . ., 1.0). This allowed us to test
whether there is an effect of these two factors. In addition
we tested whether the saliency measures are different from
zero. The details of this analysis are described in the Sec-
tion 2.4.7.

We found that SLC showed a strong dependence on peak
modification level (Fig. 5B; p < 10�4, F (8,207) = 7.83 for
the factor peak modification level). This result is not sur-
prising given that the modifications affect the luminance-
contrast distribution within one image. When the modifica-
tion remained in the range of natural contrast-fluctuations
(i.e., a = ±0.2), SLC was indeed not different from unmod-
ified images (p = 0.29 post hoc contrast for a = �0.2 vs.
a = 0, p = 0.42 for a = 0.2 vs. a = 0). These data based
on the intrinsic measure SLC provided no indication that
modifications within the range of natural contrast fluctua-
tions differentially affect the saliency of luminance-contrast.

In line with the results on unmodified images, no differ-
ences were found between monkeys and humans in the val-
ues for SLC across modification levels (p = 0.40 for the
factor species). Since there was also no interaction between
the factors species and peak modification level (p = 0.74),
SLC can be regarded as species independent across modifi-
cation levels.

Mean SLC was positive for all peak modification levels
(Fig. 5B). Using the independence between peak modifica-
tion levels, we tested whether SLC is different from 0 for
each peak modification levels separately. Using a t-test,
we found that for a P +0.4 all p values in both species
were smaller than 10�4. For the remaining a, SLC was sig-
nificantly larger than 0 in both species for all but one peak
modification level (monkeys: p = 0.002 at a = �0.6,
p = 0.057 at a = �0.4, p = 0.021 at a = �0.2, p = 0.005 at
a = 0 and p = 0.0005 at a = +0.2; humans: p < 10�4 at
a = �0.6, p = 0.002 at a = �0.4, p < 10�4 at a = �0.2,
p = 0.005 at a = 0, and p = 0.004 at a = +0.2). Using F sta-
tistics instead of t statistics yielded the same results. This
result confirms the positive relationship between fixation
probability and luminance-contrast, which we have
described for unmodified images above, for the modified
images.

When performing the same analysis as for SLC for STC
(Fig. 5C) we found no dependence on peak modification
level (p = 0.11, GLM-MANOVA for factor peak modifica-
tion level). Hence, the modifications had no impact on the
strength of this attraction over the range tested. We
observed no difference between species across modification
levels (p = 0.79 for the factor species) and no interaction
between species and peak modification level (p = 0.50).
This allows us to conclude that on the phenomenological
level there is no difference between species regarding the
correlative effect of texture-contrast on overt attention.
STC was positive for all peak modification levels tested.
Since STC did not depend on peak modification level, we
pooled over all peak modification levels and found the
mean STC to be significantly larger than 0 for both species
(p < 10�4, t-test for both species). Hence, texture-contrast
is positively correlated to overt attention.

We performed the same analysis for SIK (Fig. 5D) and
found a highly significant dependence on peak modifica-
tion level (p < 10�4; F (8,207) = 7.44). For all peak modifi-
cation levels, SIK is significantly larger than 0 (monkey:
p < 0.002 for all a; human: p < 2 · 10�4 for all a, t-tests).
There is no dependence on species (p = 0.29) and no inter-
action between species and peak modification level
(p = 0.17). Hence, SIK can be regarded as species indepen-
dent across modification levels. In summary, although SIK
also incorporates the orientation domain, results are simi-
lar to the results obtained on SLC. Most importantly, there
is no dependence on species in neither SLC, STC nor SIK.

Next, we directly measured the saliency of the modifica-
tion (Smod). Performing the GLM analysis for Smod showed
a strong dependence on modification level (p < 10�4,
F (7,208) = 40.41, Fig. 5E). More importantly, Smod was
also strongly dependent on species (p < 10�4,
F (1,214) = 16.10, Fig. 4D). Saliency in monkeys was larger
at all modification levels than in humans. Post hoc t-tests
revealed that this species dependence is significant at mod-
erate modification levels (p = 0.04 at a = �0.4; p = 0.008 at
a = �0.2; p = 0.006 at a = +0.2). At the other more
extreme peak modification levels, no significant difference
was observed (p = 0.41 at a = �0.6; p = 0.26 at a = +0.4;
p = 0.70 at a = +0.6; p = 0.24 at a = +0.8; p = 0.08 at
a = +1.0). Since the distribution of Smod cannot necessarily
be assumed to be normal across images (Fig. 5F), we in
addition tested the difference of medians at the modifica-
tion levels �20% and +20% using a Wilcoxon-test. Indeed
the medians across images were also significantly different
(p = 0.01 at a = �0.2; p = 0.02 at a = +0.2). This confirms
that at moderate modification levels lying in the range of
natural contrast fluctuations, there is a different effect of
modifications on monkeys compared to humans.

3.7. Signal-detection theory based analysis

On a large data-set, such as ours, observing a significant
relation of a feature to fixation does not necessarily imply
that this feature is indeed a good predictor of where mon-
keys and humans fixate on a trial-by-trial basis. To address
this issue Tatler et al. (2005) recently suggested the ROC
area as a more meaningful measure. This measure takes a
value of 1 if a feature perfectly predicts fixation. It takes
0.5 if there is no relation at all, which we verified by using
the control fixations. We measured the ROC area for each
feature (luminance-contrast, texture-contrast, IK-saliency,
and modification) at each peak modification level. Lumi-
nance-contrast, texture-contrast, and IK-saliency are larger
than chance (0.5) for all peak modification levels in both
species (Figs. 6A–C). In addition, for luminance-contrast
and IK-saliency there is no peak modification level, for
which the lower 99% confidence limit drops below chance.
This also holds for the majority of peak-modification levels
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in the case of texture-contrast. While this analysis confirms
the finding above that these features have a positive corre-
lation to overt attention, it also shows that the effects are—
though significant—small: the maximum ROC area stays
below 0.59 for luminance-contrast (0.59), texture-contrast
(0.54) and IK-saliency (0.57). In addition the ROC area
is directly comparable across features. Comparing lumi-
nance-contrast to texture-contrast we find for all but one
peak modification level (a = 0.2 in humans), ROC area to
be larger for luminance-contrast. This suggests that—
across all peak modification levels—texture-contrast is
slightly less related to overt attention than luminance-
contrast.

ROC areas for contrast-modification are above chance
for all but one modification level (a = �0.2 in monkeys,
0.499), and reach a maximum of 0.61 for monkeys and
0.58 for humans at a = 1 (Fig. 6D). Although these data
show that an effect of modifications is weak to absent for
small modification levels on a trial-by-trial basis, we may
nevertheless analyze whether humans or monkeys are more
susceptible to the modifications using a similar method of
signal-detection analysis. Instead of plotting ‘‘hits’’ for
each species compared to ‘‘false alarms’’ in the same spe-
cies, we plot hits of humans versus the hits of monkeys
for varying thresholds of contrast-modification. For
a = �0.2 (Fig. 6E, left) we find the resulting curve being
above the diagonal. This implies that for the same modifi-
cation threshold more fixations of humans are above
threshold than for monkeys. Consequently—as the modifi-
cations are of negative value—monkeys are more suscepti-
ble to the modifications than humans at a = �0.2. For
a = +0.2 (Fig. 6E, right) the curve is slightly below the
diagonal. Hence, more fixations of monkeys are above
threshold than for humans. As the modification is positive,
again monkeys are more susceptible to modifications at
a = +0.2. In both cases the effects are small with the areas
under the curve being 0.52 and 0.48, respectively, but con-
sistent with the data obtained with the statistical analysis
above. In summary, the ROC measure confirms the result
of the statistical analysis regarding the difference between
species. However, it also points out that the prediction of
any simple model for static scenes on fixation is rather
poor. This will be the rationale to employ a model-indepen-
dent measure of how well human and monkey fixations are
interrelated below (Section 3.9).

3.8. Time-course of saliency

Regarding human data, there has been considerable
debate on whether or not there is a difference between
the early fixations on a given stimulus and the later fixa-
tions (Parkhurst et al., 2002; Tatler et al., 2005). Hence,
we here analyze the development of the saliency measures
SIK and Smod over the course of the 10 first fixations on
each stimulus.

In the case of SIK a 3-factor ANOVA over the factors
fixation number, peak modification level and species
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reveals an interaction between those 3 factors (p = 0.03).
Consequently, we analyze the effect of fixation number
and species separately for each peak modification level
(Fig. 7, top). For unmodified scenes, we do not observe
any effect, neither of fixation number (p = 0.12), species
(p = 0.17) nor of interaction between those two
(p = 0.42). In case of modified images, we find a significant
species effect for a = �0.2 (p = 0.04), a = +0.4
(p = 0.0002), a = +0.8 (p = 0.02) and a = +1.0 (p < 10�4;
F (1,8) = 13.53). Fixation number shows a significant effect
at a = +0.8 (p = 0.03) and a = +1.0 (p = 0.008). A signifi-
cant interaction between species and fixation is found at
a = +0.4 (p = 0.02) and a = +0.8 (p = 0.04). In the cases,
where there is a significant effect of species, this effect most-
ly arises from monkeys having smaller SIK values for the
first fixations, but a slower decay of these values over time.
In cases where there is significant dependence on fixation
number, SIK is high for the first 1 or 2 fixations and then
gradually decays and the decay is faster for humans than
it is for monkeys. This is in line with the trend that humans
fixate the single most salient spot—as defined by IK-salien-
cy—on average slightly earlier (after 6.4 ± 1.3 fixations)
than monkeys (7.3 ± 0.6), a trend which is, however, not
significant (p = 0.42, t-test). The relatively rapid decay
observed in humans for the relation of bottom–up features
to fixation is consistent with the view that bottom–up fea-
tures—if at all—are relevant for humans only during the
first few fixations. However, it is important to note that
we observe such a dependence on fixation number only
for high modification levels, which potentially affect the
global appearance of the stimulus as natural. In conclu-
sion, there is a slight tendency for humans to fixate points
of higher IK-saliency earlier than monkeys. Since this effect
is only present for high peak modification levels, this may
be attributed to saliency arising from modifications deviat-
ing from the general global natural appearance.

For Smod the 3-factor ANOVA reveals no 3-factor inter-
action (p = 0.70). There is a strong dependence on species
and modification (p < 10�4 for the factors species and mod-
ification). As there is significant interaction between peak
modification level and fixation number (p = 0.003), we
again analyze the different peak modification levels sepa-
rately (Fig. 7, bottom). We find a species difference for
all but one peak modification level (a = �0.6: p = 0.01;
a = �0.4: p = 0.12; a = �0.2: p = 0.0009; a = +0.2:
p = 0.0004; a = +0.4: p = 0.0005; a = +0.6: p = 0.001;
a = +0.8: p = 0.001; a = +1.0: p < 10�4). In all cases where
the species difference is significant, monkeys are more sus-
ceptible to the modifications than humans over almost all
fixation numbers (64/70 data-points, Fig. 7, bottom). Only
for the strongest modification (a = +1.0) there is a signifi-
cant effect of fixation number (p = 0.0001), which is—how-
ever—not monotonic over time; and at no peak
modification level, there is any interaction between species
and fixation number (p > 0.27 for each a). These data dem-
onstrate a strong difference between humans and monkeys
with respect to the influence of Smod, when comparing the
data fixation by fixation. It is important to note the differ-
ence to the analysis of Section 3.6. The present analysis is
not confounded by the fact that monkeys have a shorter
fixation duration and thus make on average more fixations
on each given stimulus, which might include larger num-
bers of less salient targets solely on the basis of this fact.
Still—as long as there is no effect of fixation number
itself—the effect of contrast modifications is most promi-
nent in the natural range, which is consistent with the
aforementioned analysis. In conclusion, the fixation-by-fix-
ation analysis demonstrates that monkeys are more suscep-
tible than humans to an imposed local low-level feature,
such as contrast modification.

3.9. Model independent measure

Although all features under investigation showed a sig-
nificant relation to overt attention, ROC analysis revealed
that the prediction performance of these features and mod-
els was nevertheless poor. Hence, we apply the normalized
distance (see Section 2.4.9) as a measure, which measures,
independent of model-assumptions and features, how well
the fixation pattern of one subject predicts the fixations
of another subject. By construction, the normalized dis-
tance takes larger values the better one subject predicts
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the other subject. A normalized distance of 0% implies that
there is no image-specific consistency between the two sub-
jects compared. Averaged across all 9 inter-human pair-
wise comparisons, the normalized distance for the first
human fixation is at 19%. This value drops monotonically
towards 0% for the first 7 fixations (Fig. 8, cyan line), with
the first 6 fixations are significantly larger than 0%
(p < 10�4; p = 2 · 10�4; p = 1 · 10�4; p = 0.02; p = 0.009;
p < 10�4, t-test for 1st to 6th fixations). More importantly,
for the first 3 fixations the normalized distances are signif-
icantly larger across all humans than the respective normal-
ized distances for monkeys (p < 10�4, t-test for each of the
first 3 fixations; Fig. 8, magenta) and than the mean inter-
species distances (p < 0.002, t-test; Fig. 8, green) Further-
more, for the first 3 fixations even the lowest value of
any of the inter-human comparisons exceeds the normal-
ized distance between the two monkeys. This implies that
for the first 3 fixations any human predicts the fixation of
any other human better than one monkey predicts the
other monkey.

To check for the possibility that monkeys look at the
same items, but just in different order, we for each pair
of subjects measure the minimum difference between any
two fixations on the same stimulus. Since in this case the
minimum over all control fixations would underestimate
the true random value, we for each image use the distance
to a randomly chosen different image as baseline. Comput-
ing the analogous measure to normalized distance yields
2.7% for the comparison of the two monkeys and
19.6 ± 9.9% on average for the human comparisons, which
is significantly larger (p = 9 · 10�4, t-test). The intra-spe-
cies value for humans is also significantly larger than the
inter-species comparison (9.2 ± 6.0%; p = 0.005, t-test),
which rules out that just one of the monkeys is behaving
differently from all other subjects. Furthermore, again
any pair of humans predicts each other better than the
two monkeys (minimum intra-humans: 7.2%). These data
demonstrate that—irrespective of any specific features—
humans have a higher tendency to look at similar items
than monkeys. In conjunction with the finding that intrin-
sic low-level features (luminance-contrast, texture-contrast,
and IK-saliency) are related to human and monkey overt
attention to a similar degree, this result provides further
evidence that humans more than monkeys rely on high-
level features or on cognitive scene interpretation.

4. Discussion

In the present study, we show that intrinsic low-level
features such as luminance-contrast, texture-contrast, and
saliency—as defined by a model on the basis of luminance
and orientation differences—are related to overt attention
in humans and monkeys to a similar degree. However, an
imposed low-level feature that has no spatially fixed rela-
tion to higher order items, affects humans and monkeys dif-
ferently. This difference is most prominent if the
modification does not introduce deviations from the global
context of the stimulus being natural. In addition, humans
show a higher consistency as to which items they direct
their attention to. Taken together, these data suggest that
humans and monkeys might employ different processing
strategies under natural conditions: while monkeys pre-
dominantly direct their attention according to low-level
features, humans are more driven by high-level scene
interpretation.

Since its original formulation in 1985 the saliency map
model for visual attention (Koch & Ullman, 1985) has
undergone various modifications. The basic scheme, how-
ever, has remained unchanged (see Itti & Koch, 2001, for
review). The stimulus is analysed in distinct feature
domains. Maps of differences in each feature are generated
at different spatial scales and the resulting maps are added
linearly. Selection of the next attended location in the
saliency map is made according to a winner-takes-all
scheme, which penalizes previously attended locations to
suppress a return to the previously visited location (‘‘inhi-
bition-of-return’’).

Several recent studies have compared human eye-move-
ments to the prediction of saliency-map models (Itti, 2005;
Parkhurst et al., 2002; Peters, Iyer, Itti, & Koch, 2005;
Tatler et al., 2005). While all these studies find that the pre-
diction performance of their respective saliency map mod-
els is significantly above chance, the reported effects—when
taking only luminance and orientation into account—are
small. Using the ROC area as measure, Tatler et al.
(2005) find a maximum of 63% for contrast, which is
decreased for lower spatial frequencies, thus on average
(given that low frequencies are predominant in natural
scenes) well compatible with our result observed on
unmodified images (54 and 53% for monkeys and humans).
When taking only luminance or orientation channel into
account, Itti (2005) finds—using a different metric—an
effect of about 10% above random fixations. In this case
the random baseline is uniformly sampled over the image
area, leading to central bias being a potential confound
that could lower this number (see discussion in Tatler
et al., 2005). Finally Peters et al. (2005), using so-called
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‘‘normalized scanpath saliency’’ find that on average IK-
saliency (or ‘‘BSM’’ in their terms) at fixations is 0.69 stan-
dard-deviations above the mean IK-saliency in each image.
For outdoor grayscale images alone their value is 0.64.
While this value well exceeds the value for uniformly sam-
pled random fixations, a control similar to our baseline
yields a value of 0.39 (Peters, personal communication).
Finally, the ROC area analysis on the Peters et al. (2005)
data yields 68%, but a control with randomly shuffled
images also yields 63% on their data (personal communica-
tion)—unlike in our case, where the control is always close
to 0.5. This is in line with the 4% points above chance we
observe. Given the difference in exact protocol and image
material, the data of Peters et al. (2005) are consequently
also compatible with the present data on humans. The
results of all these studies on human overt attention—
though not always using directly comparable measures—
are in general in agreement with the size of the effects we
observe in humans and monkeys. In general, the prediction
of such static models and features is—though significantly
above chance—rather poor as compared to models for
dynamic scenes (Itti, 2005).

The aforementioned data confirm that saliency-map
models predict human fixations in natural scenes above
chance. However, only few studies have systematically
assessed the impact of individual features in overt atten-
tional behavior without specific model assumptions. In
humans, a correlative effect of luminance-contrast and fix-
ation had first been described by Reinagel and Zador
(1999) and was later confirmed in several other studies
(Einhäuser & König, 2003; Krieger et al., 2000; Parkhurst
& Niebur, 2003). Using a larger set of images and thus
presenting each individual image fewer times than in our
earlier study, we confirm the correlative effect of lumi-
nance-contrast with overt attention in humans. We also
use a larger presentation size and find that the effect is
already visible without restricting the analysis to a certain
frequency range. This facilitates interpretation of the data
for which the stimulus was modified in the contrast
domain. Most importantly, we demonstrate that the effect
is also present in monkeys and that it is of similar size to
that observed in humans, at least when considering lumi-
nance-contrast.

To account for results from a previous study from our
laboratory using human subjects alone (Einhäuser &
König, 2003), Parkhurst and Niebur (2004) suggested an
extension of the saliency map model, which makes distinct
predictions for the effects of luminance-contrast and tex-
ture-contrast. Using some general assumptions on the rela-
tive scale of first and second order effects, this model
predicts eye-tracking and psychophysical data. The model
predicts that texture-contrast is approximately 10-times
more important than luminance-contrast in attracting
human overt attention. Here, we use a definition of tex-
ture-contrast that does not require specific model assump-
tions and is a canonical generalization of the luminance-
contrast definition. With respect to human subjects we
confirm an interaction between texture-contrast and overt
attention. In addition, we find an interaction between tex-
ture-contrast and overt attention in monkeys. The interac-
tion is not significantly different to the corresponding
interaction seen in the human results.

In terms of understanding the mechanisms underlying
overt attention, this description is phenomenological and
therefore incomplete. The model cannot exclude the possi-
bility that the observed relations do not arise from some
unknown image property in natural scenes that is correlat-
ed with both luminance-contrast and overt attention. In an
earlier study of human overt attention using the same
modification paradigm described here, we found evidence
for such a higher order image property (Einhäuser &
König, 2003). Texture-contrast may account partly for this
observation (Parkhurst & Niebur, 2004). However, our
present findings suggest that the saliency of texture-con-
trast (STC) does not depend on the modification level,
while the effect of modifications (Smod) does. Thus, this
demonstrates the need to consider an additional higher
order property.

The main goal of the present study was to compare overt
attention in humans and monkeys viewing natural scenes.
While we find no difference in the phenomenology of overt
attention on unmodified images, contrast modifications
appeared to produce different effects in the two species.
The conceptual advantage of measuring the effect of such
modifications as compared to features inherent in natural
scenes, is that the feature ‘‘contrast-modification’’ has no
fixed correlation to any localized high level feature. Hence,
inter-species differences of contrast-modification cannot be
attributed to such a local high-order bottom–up feature. By
construction, contrast-modification correlates to low-level
features such as luminance-contrast and texture-contrast.
As we observe no inter-species difference for those features,
it is unlikely that their relation to contrast-modification
accounts for the species difference. Finally, modifications
introduce a local deviation from the fact that the scene is
natural. This may well account for monkeys and humans
attending to the modifications, especially if they are strong.
However, it cannot fully explain the inter-species differ-
ence, which is most prominent for contrast modifications
within the range of luminance-contrasts observed in natu-
ral images.

There are a variety of possible explanations for the
observed inter-species difference. A straight-forward expla-
nation might suggest that monkeys who perform tasks
involving fixations for several hours a day actively search
for a fixation spot in the natural image and thus have a
lower threshold for finding the modified regions. This inter-
pretation, however, is unlikely for several reasons. First,
neither monkey had been trained to perform search tasks
or tasks involving natural scenes. Second, monkeys are
rewarded irrespective of their eye-movements. Third, if this
interpretation would hold, the difference should also be
equally strong for modifications inside and outside the
range of natural contrast fluctuations.
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An alternative interpretation might suggest that mon-
keys and humans perceive images of natural scenes differ-
ently. One possibility would be that monkeys are not
capable of interpreting a photograph as a representation
of the real world. However, this conclusion is not consis-
tent with the results of recordings from object-sensitive
neurons in macaque inferotemporal cortex (Booth & Rolls,
1998). They were not able to identify differences in the
responses to real objects and image of the same objects.
In view of these results, there is little evidence that process-
ing of natural images and real scenes is different in the
monkey visual cortex. Furthermore, the speculation would
invalidate all monkey experiments involving images of nat-
ural scenes as being representative of natural conditions.

It is entirely plausible, however, that the two species dif-
fer in the degree to which they perceive images as ‘‘natu-
ral.’’ In this view humans would assign a higher order
interpretation to the stimulus. top–down signals would
then guide their attention shifts based on the contrast-dis-
tribution usually consistent with such stimuli more than
bottom–up signals from the actual stimulus. Only when
the modifications were sufficiently large to appear unnatu-
ral would bottom–up signals from the stimulus drive overt
attentional behavior. If monkeys lack similar knowledge on
the statistical relations in natural scenes—potentially
because they grew up in a cage environment—they are
more driven by the bottom–up signal and hence more sus-
ceptible to the modifications. Such a view is supported by
Parkhurst and Niebur (2003), who point out that the type
of image (natural vs. artificial, outdoor vs. indoor) has
great impact on human overt visual behaviors. It should
be emphasized that the proposed transition from a domi-
nant bottom–up mode to a dominant top–down mode
may be gradual. In this view, small modifications would
suffice for monkeys to be dominated by bottom–up cues,
while the threshold for humans to shift away from a top–
down dominated mode is higher.

To achieve comparable behavioral relevance for both
species we exclusively used outdoor scenes containing few
nameable objects. As in any study comparing monkey
and human behavior, we still cannot exclude, however,
the possibility that the two species implicitly assign a differ-
ent interpretation to the task and that this in turn affects
the relative importance of bottom–up and top–down
signals.

While further experiments are needed to test these
hypotheses, our main finding is unaffected; rhesus monkeys
employ apparently different strategies to guide overt visual
attention when viewing natural scenes to those employed
by humans. The conclusion implied by our result on the
applicability of monkey studies to human observers is two-
fold: for studies that only rely on correlative effects of local
low-level features to attention, our data assure that these
effects are similar in both humans and monkeys. In partic-
ular, saliency map models, which use local contrasts, are
likely to predict monkey attention as well—or as badly—
as they predict human attention. This provides some justi-
fication to test predictions of such computational con-
cepts—originally developed for human attention—in
monkey models. On the other hand several studies com-
pare the processing of natural scenes to noise stimuli that
are similar in their local statistical structure, but do not
have a globally natural appearance (e.g., Guo et al.,
2003; Rainer, Augath, Trinath, & Logothetis, 2002). When
relating the results of such studies to human processing
(which none of the studies themselves explicitly implies,
though), one has to take into account the species differenc-
es in weighing local features against high-level scene inter-
pretation. Irrespective of the underlying cause of this
difference, our results hence emphasize the care that should
be taken when relating studies performed in the monkey to
human perception.
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