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Abstract

When cells respond well to complex stimuli, it is often difficult to determine
which aspects of the stimulus are most relevant. We present a technique to describe
the encoding of information on many stimulus features by a single cell. Based on
the concept of conditional mutual information, we distinguish cells that are mono-,
dual- or synergistic encoders, depending on their amount of specialisation for stim-
ulus features. As an application of the technique, we show that cells in the macaque
medial superior temporal area encode information on the direction of heading, but
simultaneously on local features such as the direction of motion in small parts of
the large spatial receptive field.
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1 Introduction

Moving higher up the hierarchy of the visual processing pathway, stimuli that drive
a cell become more and more complex. The complexity of a stimulus and the co-
variation of features in a stimulus often lead to an ambiguity about which aspect of
a stimulus actually drives the cell; tuning for one feature dimension is often difficult
to separate from tuning for another. One could deal with this ambiguity by using an
experimental design that varies the features of the stimulus factorially. Two problems
arise in this approach. First, the recording time required to quantify a neuron’s re-
sponse grows exponentially with the number of stimulus features. Secondly, some of
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the combinations in the factorial design will be quite unnatural. Unless a neuron’s re-
sponse properties are linear, knowing the response to a stimulus that the neuron never
gets confronted with in the real world is of doubtful value. The time spent on trying
to measure the whole factorial space could better be spent on trying to determine the
response to natural stimuli with higher accuracy. Another approach to the ambiguity
problem is consider only cells that respond invariantly to a particular stimulus dimen-
sion. This is not an easy task for a neuron and, depending on the stringency with which
“invariance” has been defined, invariant neurons have proven difficult to find.

We describe an information theoretic approach that deconstructs the receptive field
along multiple feature dimensions.This characterises the encoding of multiple stimu-
lus features by single cells. No factorial designs are required, hence stimuli can be
restricted to natural stimuli, improving the relevance of the data as a description of the
real-world operation of the cells. The method does not look for invariant responses,
but rather assumes that a cell can, in principle, provide information on all features in
the stimulus. The problem of co-variation of features is dealt with by calculating con-
ditional information: the amount of information encoded on a particular feature, given
knowledge of a different feature. This concept allows us to determine whether cells en-
code information on a feature dimension that is not already expected from its encoding
of another feature dimension. Section 2 describes the formal details of receptive field
deconstruction. In section 3 we apply the method to the analysis of data recorded in the
medial superior temporal (MST) area of the macaque during optic flow stimulation.

2 Receptive Field Deconstruction

In the typical situation where this method can be applied, a stimulus varies along two
or more feature dimensions, but these dimensions are not independent. For instance,
consider a set of visual stimuli with varying sizes and velocities, in which small objects
tend to have low speeds. Such correlations arise in natural scenes due to the fact that
far-away objects appear both small (geometrical perspective) and move slowly (motion
parallax). In this example, the features size and velocity are correlated and any tuning
for size will be correlated with tuning for velocity.

We start by estimating the information encoding on the stimulus features without re-
gard for stimulus correlations. For this we use standard information theoretic methods
[5]. The first decision that has to be made, is what code to use. This decision is guided
by assumptions about what is important to the brain, but also limited by the amount
of data one can record from a single cell. A simple assumption is that the mean rate
r forms the code. We then construct a contingency table that tabulates how often a
stimulus feature is followed by a particular codewordr. From such a table, an estimate
of information can be calculated. This direct method of information estimation over-
estimates the amount of information, but we use the methods of [3] to correct for the
limited-sampling bias.
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Assuming there are two stimulus featuresa and b, we construct contingency tables
for both and estimate the information in the code (r) on either of the features:I(r; a)
andI(r; b). If, however, stimulus featuresa andb are correlated, these information
estimates are not independent. For instance, if a particular featurea = a∗ always co-
occurs withb = b∗, then a cell that encodes information ona∗, will inevitably encode
information onb∗. There is nothing wrong or invalid about this information onb∗, but
because it is due to the stimulus correlations, that same information may not be present
in a different stimulus set, or in the real-world where the fortuitous correlation between
a∗ andb∗ may not exist. To claim that a cell encodes information on multiple feature
dimensions, we should show that the information onb cannot be obtained from the
information ona together with a knowledge of the correlations betweena andb.

To clarify this, assume that a cell encodes information ona (i.e. I(r; a) > 0). Consider
the ways in which information onb can also become represented inr. First, changes
in b could be correlated with changes ina which in turn cause changes inr. Secondly,
b could, independently froma, affect the rate. Thirdly, joint changes ina andb could
cause changes inr. These possibilities are in fact part of a continuum of possibilities
that can be described by the conditional mutual information. The conditional mutual
information betweenr andb givena, denoted byI(r; b|a) is the mutual information
betweenr andb given knowledge ofa. If information in r on b is only due to corre-
lations betweena andb, thenI(r; b|a) = 0. In other words, if you already knowa
then knowingr does not give you anyextra information on featureb. To calculate the
conditional mutual information, express it in terms of entropyH [1]:

I(r; b|a) =
〈

log
p(r, b|a)

p(r|a)p(b|a)

〉
p(r,a,b)

= H(r|a)−H(r|b, a)

where the<> denote the expectation value over the joint probabilities. The entropies
can easily be calculated from the contingency tables based on the data. By calculating
I(r; b|a) we can divide cells into three classes:

Mono Encoders: I(r; b|a) = 0. Although there may be information onb in r, this
information could have been determined by combining the information inr ona
with the stimulus correlations. There is noextra information onb in r.

Dual Encoders:0 < I(r; b|a) < I(r; b). Part of the information onb in r is due to
stimulus correlations witha, but there is also some information that cannot be
obtained from stimulus correlations.

Synergistic Encoders:I(r; b|a) > I(r; b). There is extra information onb in r, but
moreover, knowinga helps to get more information onb from r. One way this
could happen is that particular combinations ofa andb-features are encoded by
a cell.

To test for significant encoding of multiple features, we must refute thatI(r; b|a) =
0. In other words, we must refute the null hypothesis thatr andb areconditionally

To Appear in Neurocomputing - Bart Krekelberg et al.



Deconstructing the Receptive Field

independentgivena. Under the assumption of this null hypothesis, the joint probability
p(r, a, b), can be expanded as:

p0(r, a, b) = p(r|a)p(b|a)p(a) = p(r, a)p(a, b)/p(a).

The alternative hypothesis is that the joint probability distributionp(r, a, b) cannot be
reducedp1(r, a, b) = p(r, a, b). The joint probabilities in these expressions can be esti-
mated from the contingency tables. For instance,n(r, a) is the contingency table where
each entry is the number of times that a particular rater followed featurea. DefiningN
as the number of stimuli, the maximum likelihood estimate for a joint probability ofa
andr is: p(r, a) = n(r, a)/N Similarly, to estimate the joint probabilityp(r, a, b) from
the data, construct the three-way contingency tablen(r, a, b). Clearly, large amounts
of data are needed to estimate 3-way tables. In terms of the contingency tables the null
and alternative hypotheses becomes

p0(r, a, b) = n(r, a)n(a, b)/(N ∗ n(a)),
p1(r, a, b) = n(r, a, b)/N

The log-likelihood of these hypotheses given the datan can be determined from the
binomial distribution:

lli = log
[ N !
Πr,a,bn(r, a, b)!

]
+

∑
r,a,b

n(r, a, b) log
[
pi(r, a, b)

]
, for i = 0, 1

To test the null hypothesis, calculate twice the difference of log-likelihoods:2(ll1 −
ll0). This quantity, called the deviance, has an asymptoticχ2 distribution with the
degrees of freedom given by the difference in the number of estimated parameters in
p0 andp1. The null-hypothesis is tested by comparing the deviance to theχ2 distri-
bution. If we can reject thatI(r, b|a) = 0 at some level of significance, then there is
information inr on featureb that cannot be obtained from the informationr on fea-
turea together with the stimulus correlations betweena andb. The magnitude of the
non-zero conditional informationI(r; b|a) can be used to classify the cell as a dual or
synergistic encoder.

3 Application to Information Coding in MST

Cells in the medial superior temporal area of the macaque (MST) respond well to
whole-field optic flow and are tuned to global properties of these flow fields such as
the focus of expansion [2]. While varying the focus of expansion, however, the exper-
imenter also varies the local structure in the flow field, such as the average speed, and
direction in small parts of the visual field. Hence, a cell’s response to a change in the
focus of expansion could in principle also be due to changes in either of these two local
features. The confounding of these stimulus dimensions and the near impossibility to
control for this confound with naturalistic stimuli make these cells ideal targets for the
deconstruction analysis.
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Paolini et al.[4] recorded extracellularly from single cells in macaque MST during
long, continuous optic flow stimulation. The flow patterns represented trajectories
through three-dimensional random dot clouds. For details of the stimuli, the electro-
physiological and histological methods, see [4]. As an application of the deconstruction
method, we determined the encoding of three stimulus features: heading, local direc-
tion and local speed. Heading was defined as the instantaneous translation vector in
eye-centred coordinates, and determined every 100ms. To define local direction and
speed we divided the field of view into 25 spatial subfields and determined the average
motion vectors in each subfield every 100ms. The whole flow field was90o × 90o,
hence the subfields were18o × 18o. The response of the neurons was characterised by
their mean firing rate in 100ms time bins. To correct for the latency of MST cells, the
time bins used to determine the responses were shifted by 25ms. This implies that we
assume that a cell encodes stimulus information by the firing rate in a window between
25 and 125ms after stimulus onset. Clearly, such a choice is somewhat arbitrary and
could be adapted to the neurons that are being studied. With appropriate amounts of
data available, a temporal code could also be investigated.

Table 1 shows the results of applying the deconstruction analysis to a set of 81 cells
from area MST. The analysis first of all quantifies how much information on the di-
rection of heading MST cells extract from optic flow. This global aspect of the optic
flow stimulus is represented with low fidelity per cell, but a small population of cells
can easily be seen to encode enough information for the animal to base its behaviour
upon. Moreover, because this calculation is based on heading directions calculated ev-
ery 100ms in a long trajectory, this shows that the representation of heading in MST
follows changes in the environment on this short time scale. The deconstruction anal-
ysis additionally shows that, even though these cells have large spatial receptive fields
(∼ 6000deg2), they nevertheless encode significant information on the stimulus direc-
tion in much smaller subfields (∼ 650deg2). Seventy four percent of cells have at least
one subfield for which significant information is encoded on the local velocity.

The simultaneous encoding of local and global information in MST cells suggests that
these cells are involved in computations for which both local and global features are im-
portant. Global features provide information on where the animal is heading, whereas
local features provide information on the depth structure of the environment and pos-
sibly the motion of independent objects. A combination of these features is highly
suitable for navigation and obstacle avoidance tasks, which we speculate these cells
could be involved in.

4 Conclusion

We presented a technique to deconstruct the receptive field along many stimulus feature
dimensions. It quantifies how much information cells encode on the many features of
a complex stimulus, even when these features are correlated. With the concept of
conditional mutual information, the deconstruction technique quantifies whether a cell
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Table 1: Information coding in MST. The first row shows the average amount of in-
formation encoded on the three features (± standard error). The second and third row
show the percentage of subfields which are dual, or synergistic with respect to heading.

Heading Direction Speed
Mean Info (bits/s) 0.6± 0.07 0.7± 0.07 0.4± 0.05

Dual - 16% 1%
Synergistic - 52% 8%

specialises in encoding a particular feature or whether it provides information on many
features at once. We believe this to be a helpful tool that allows one to move away from
assigning single tasks to neurons and instead acknowledge that neurons can be a source
of information for many different features. This wide range of information is present
in the spikes, and is waiting to be read out by any downstream area that needs it.
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