
Nichtprimitive Rekursion und die Fibonacci-Zahlen

Primitive und nichtprimitive Rekursion

Die rekursive Berechnung von n! ist ein typisches Beispiel für eine primitive Rekursion.
Man nennt eine rekursive Definition primitiv, wenn die Berechnung von f(n) nur auf
die Werte von n und von f(n− 1) zurückgeführt wird, also wenn sich die Funktion f
in der folgenden Weise darstellen lässt

f(n) = g(n, f(n − 1)).

Eine wichtige Konsequenz daraus ist, das f(n) in linearer Zeit (gemessenen in Ab-
hängigkeit von n) berechnet werden kann, sofern man die Funktion g in konstanter
Zeit auswerten kann. Weitere primitiv rekursive Funktionen lassen sich finden, wenn
man an Programme denkt, die aus einer einfachen Zählschleife bestehen, wie z.B. die
Berechnung der n-ten Potenz einer Zahl a oder die Berechnung der Summe

∑n
k=0 k2.

Für das letzte Beispiel hat man die Verankerung f(0) = 0 und die Rekursion f(n) =
n2 + f(n − 1), d.h. die Darstellung f(n) = g(n, f(n − 1)) ergibt sich, wenn man
g(x, y) = x2 + y verwendet.

Der Euklidische Algorithmus ist nicht primitiv rekursiv, denn man geht nicht auf
den unmittelbaren Vorgänger zurück, sondern kann auch größere Sprünge machen.
Dennoch erreicht man auch hier eine Laufzeit, die höchstens linear ist. Hauptgrund
dafür ist, dass man sich mit jedem Schritt weiter in Richtung der Verankerung bewegt
und jeweils nur ein neuer Aufruf von ggT erfolgt. Für den verbesserten Euklidischen
Algorithmus (der die mod–Funktion verwendet) kann man sogar nachweisen, dass
der ggT (n, m) in logarithmischer Zeit (gemessenen in Abhängigkeit von max(n, m))
berechnet wird.
Die Situation ändert sich stark, wenn ein Rekursionsschritt zu mehren Funktionsauf-
rufen führt, z.B. wenn der Rekursionsschritt die allgemeine Form
f(n) = g(f(n − 1), f(n − 2)) hat.

Fibonacci-Zahlen

Das bekannteste Beispiel einer solchen Rekursion ist die Folge der Fibonacci-Zahlen,
die mit 0, 1, 1, 2, 3, 5, 8, . . . beginnt und durch die Rekursion f(n) = f(n−1)+f(n−2)
definiert ist. Diese Folge wurde vom Mathematiker Leonardo von Pisa (bekannter
unter dem Namen Fibonacci) als nicht ganz ernsthafte Beschreibung der Entwick-
lung einer Kaninchenpopulation eingführt. Man trifft diese Zahlen in der Natur
wieder, z.B. bei der Abzählung von rechts- und linksdrehenden Spiralen in Sonnen-
blumenblüten. Mehr dazu findet man unter:

http://www.mathekiste.de/fibonacci/inhalt.htm

Es ist also nicht schwer, ein Haskell-Programm zur Berechnung dieser Zahlen zu
schreiben.

1

fib :: Int -> Int

fib n

| n==0 = 0 -- man beginnt mit fib 0, das ist eine Festlegung

| n==1 = 1 -- diese Rekursion braucht zwei Verankerungen

| otherwise = fib (n-1) + fib (n-2)

Exponentielles Wachstum der Fibonacci-Zahlen und Laufzeit

Sieht man sich ein etwas längeres Anfangsstück der Fibonacci-Folge an, so fällt auf,
dass sie schnell wächst: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, Es ist offensichtlich,
dass die Folge monoton wachsend ist, und man überzeugt sich leicht, dass sie expo-
nentiell wächst, denn durch die Monotonität ergibt sich:
1) f(n) = f(n − 1) + f(n − 2) ≤ 2f(n − 1) und folglich f(n) ≤ 2n,
2) f(n) = f(n− 1) + f(n− 2) ≥ 2f(n− 2) und folglich f(2n) ≥ 2n−1 (beginnend mit

f(2) = 20), d.h. f(n) ≥ (
√

2)n−1 .
Die Basis des exponentiellen Wachstums liegt also zwischen

√
2 und 2, eine genauere

Bestimmung geben wir am Ende der Vorlesung.
Beim Aufruf des Programms kann man beobachten, dass auch die Laufzeit stark
wächst, sie liegt schon bei fib 37 je nach Rechner bei mehreren Minuten. Zum
Verständnis dessen machen wir eine Laufzeitanalyse, d.h. wir zählen ab, wie oft die
Funktion fib aufgerufen wird, wenn wir fib n berechnen, und bezeichnen diese An-
zahl mit t(n).
Offensichtlich ist t(0) = t(1) = 1, denn wir bekommen mit den Aufruf auch gleich
das Ergebnis. Dagegen ist t(3) = 3, denn der Aufruf fib 2 zieht die Aufrufe fib 1

und fib 0 nach sich. Für fib 3 und fib 4 kann man die Aufrufstruktur durch die
folgenden zwei Bäume nachzeichnen und erhält t(3) = 5, t(4) = 9.

0

2

1

3

0

2

1

1 0

2

1

43

1

Diese Bäume zeigen auch, wie man t(n) rekursiv beschreiben kann, denn der Aufruf

2

fib n führt zu den Aufrufen fib (n-1) und fib (n-2), d.h.

t(n) = 1 + t(n − 1) + t(n − 2).

Da diese Rekursion sehr ähnlich zur Fibonacci-Rekursion ist, ist zu vermuten, dass
sich auch t(n) und f(n) stark ähneln. Zum Beweis verwendet man vollständige In-
duktion in der verallgemeinerten Variante, d.h. beim Induktionsschritt ist es erlaubt,
nicht nur auf den unmittelbaren Vorgänger, sondern auf beliebige kleinere Zahlen
zurückzugreifen. Für den Induktionsanfang wird die folgende Tabelle sehr nützlich
sein.

n 0 1 2 3 4 5 6
f(n) 0 1 1 2 3 5 8
t(n) 1 1 3 5 9 15 25

Behauptung: t(n) ≥ f(n + 1) und t(n) ≤ f(n + 3) − 1 für alle natürlichen Zahlen
n.
Den Induktionsanfang für n = 0 und n = 1 kann man bei beiden Ungleichungen aus
der Tabelle ablesen.
Sei nun n ≥ 1 und die Behauptung für n und alle kleineren Zahlen bewiesen. Wir
zeigen zuerst, dass die linke Ungleichung auch für n + 1 gilt:

t(n + 1) = 1 + t(n) + t(n − 1) ≥ 1 + f(n + 1) + f(n) ≥ f(n + 2)

Dabei wurde die Rekursion für t(n+1), die Induktionsvoraussetzung und die Rekur-
sion für f(n + 2) verwendet. Für die rechte Ungleichung funktioniert das ähnlich:

t(n + 1) = 1 + t(n) + t(n − 1) ≤ 1 + f(n + 3) − 1 + f(n + 2) − 1 ≤ f(n + 4) − 1

Genauere Laufzeitabschätzungen

Mit etwas anspruchsvolleren mathematischen Methoden kann man die folgende ge-
schlossene Formel für die Fibonacci-Zahlen herleiten:

fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1 −√

5

2

)n

Aus dieser Formel kann man sehr gut das exponentielle Wachstum der Fibonacci-
Zahlen und ihr Konvergenzverhalten ablesen. Der zweite Summand kann für große n
vernachlässigt werden, so dass der Quotient aus zwei aufeinanderfolgenden Fibonac-
cizahlen gegen 1+

√
5

2
geht. Diese Zahl beschreibt bekanntlich den goldenen Schnitt.

Man kann also sagen, dass sich die Laufzeit der Fibonacci-Rekursion (gemessen in

Funktionsaufrufen) proportional zum Exponentialausdruck (1+
√

5
2

)n verhält.

3

Eine geometrische Demonstration dafür, dass diese Konvergenz schon für relativ
kleine Zahlen einsetzt, findet man in der folgenden Abbildung:

Aus vier Puzzleteilen wird jeweils ein 5 × 13 Dreieck zusammengesetzt, aber im
rechten Dreieck bleibt ein Feld frei. Wie kann man das erklären?
Beim genaueren Hinsehen oder besser beim Nachrechnen entdeckt man, dass die
Hypotenusen der beiden kleinen Dreiecke verschiedene Anstiege haben und somit
keine Gerade bilden: 2

5
= 0, 4 und 3

8
= 0, 375. Unter Berücksichtigung von 2 =

f3, 3 = f4, 5 = f5 und 8 = f6 erhält man eine geometrische Idee davon, dass sich die
Quotienten f3/f5 und f4/f6 nur wenig unterscheiden.

Verbesserung der Laufzeit

Wie man sich leicht überzeugen kann, liegt der Hauptgrund für die schlechte Laufzeit
nicht primär an der Programmiersprache Haskell, sondern an der nichtprimitiven
Form der Rekursion, die für jeden Rekursionsaufruf zwei weitere Funktionsaufrufe
nach sich zieht.
Bei der Verwendung einer imperativen Programmiersprache gibt es einen einfachen
Ausweg, nämlich den Verzicht auf Rekursion und die Zwischenspeicherung aller Fibo-
nacci-Zahlen bis zu der zu berechnenden Zahl.
Ein solches Zwischenspeichern ist bei funktionalen Programmiersprachen nicht möglich,
aber man kann es über einen kleinen Trick erreichen. Man verwendet für die Ausgabe
einen Datentyp, der mehr als eine Zahl halten kann. Wir werden in den nächsten
Vorlesungen zwei neue Datentypen kennenlernen, die dafür geeignet sind: Tupel und
Listen.

4

