Nichtprimitive Rekursion und die Fibonacci-Zahlen

Primitive und nichtprimitive Rekursion

Die rekursive Berechnung von n! ist ein typisches Beispiel fiir eine primitive Rekursion.
Man nennt eine rekursive Definition primitiv, wenn die Berechnung von f(n) nur auf
die Werte von n und von f(n — 1) zuriickgefithrt wird, also wenn sich die Funktion f
in der folgenden Weise darstellen lasst

f(n) =g(n, f(n—1)).

Eine wichtige Konsequenz daraus ist, das f(n) in linearer Zeit (gemessenen in Ab-
héngigkeit von n) berechnet werden kann, sofern man die Funktion ¢ in konstanter
Zeit auswerten kann. Weitere primitiv rekursive Funktionen lassen sich finden, wenn
man an Programme denkt, die aus einer einfachen Zihlschleife bestehen, wie z.B. die
Berechnung der n-ten Potenz einer Zahl a oder die Berechnung der Summe >, _ k%
Fiir das letzte Beispiel hat man die Verankerung f(0) = 0 und die Rekursion f(n) =
n? + f(n — 1), d.h. die Darstellung f(n) = g(n, f(n — 1)) ergibt sich, wenn man
g(z,y) = 2* + y verwendet.

Der Euklidische Algorithmus ist nicht primitiv rekursiv, denn man geht nicht auf
den unmittelbaren Vorganger zuriick, sondern kann auch groflere Spriinge machen.
Dennoch erreicht man auch hier eine Laufzeit, die hochstens linear ist. Hauptgrund
dafiir ist, dass man sich mit jedem Schritt weiter in Richtung der Verankerung bewegt
und jeweils nur ein neuer Aufruf von gg7T erfolgt. Fiir den verbesserten Euklidischen
Algorithmus (der die mod—Funktion verwendet) kann man sogar nachweisen, dass
der ggT'(n,m) in logarithmischer Zeit (gemessenen in Abhéngigkeit von maz(n, m))
berechnet wird.

Die Situation andert sich stark, wenn ein Rekursionsschritt zu mehren Funktionsauf-
rufen fiithrt, z.B. wenn der Rekursionsschritt die allgemeine Form

f(n)=g(f(n—1), f(n—2)) hat.
Fibonacci-Zahlen

Das bekannteste Beispiel einer solchen Rekursion ist die Folge der Fibonacci-Zahlen,
die mit 0,1,1,2,3,5,8, ... beginnt und durch die Rekursion f(n) = f(n—1)+ f(n—2)
definiert ist. Diese Folge wurde vom Mathematiker Leonardo von Pisa (bekannter
unter dem Namen Fibonacci) als nicht ganz ernsthafte Beschreibung der Entwick-
lung einer Kaninchenpopulation eingfithrt. Man trifft diese Zahlen in der Natur
wieder, z.B. bei der Abzahlung von rechts- und linksdrehenden Spiralen in Sonnen-
blumenbliiten. Mehr dazu findet man unter:

http://www.mathekiste.de/fibonacci/inhalt.htm

Es ist also nicht schwer, ein Haskell-Programm zur Berechnung dieser Zahlen zu
schreiben.

fib :: Int -> Int

| n==0 = 0 -- man beginnt mit fib O, das ist eine Festlegung
| n==1 = 1 -- diese Rekursion braucht zwei Verankerungen
| otherwise = fib (n-1) + fib (n-2)

Exponentielles Wachstum der Fibonacci-Zahlen und Laufzeit

Sieht man sich ein etwas ldngeres Anfangsstiick der Fibonacci-Folge an, so fallt auf,

dass sie schnell wachst: 0,1,1,2,3,5,8,13,21,34,55,89,144, Es ist offensichtlich,

dass die Folge monoton wachsend ist, und man iiberzeugt sich leicht, dass sie expo-

nentiell wachst, denn durch die Monotonitat ergibt sich:

1) f(n)=f(n—=1)+ f(n—2) <2f(n—1) und folglich f(n) < 2",

2) f(n)=f(n—1)+ f(n—2) > 2f(n—2) und folglich f(2n) > 2"~! (beginnend mit
f(2) = 2%), dh. f(n) > (V)L .

Die Basis des exponentiellen Wachstums liegt also zwischen /2 und 2, eine genauere

Bestimmung geben wir am Ende der Vorlesung.

Beim Aufruf des Programms kann man beobachten, dass auch die Laufzeit stark

wachst, sie liegt schon bei fib 37 je nach Rechner bei mehreren Minuten. Zum

Verstandnis dessen machen wir eine Laufzeitanalyse, d.h. wir zahlen ab, wie oft die

Funktion fib aufgerufen wird, wenn wir £ib n berechnen, und bezeichnen diese An-

zahl mit ¢(n).

Offensichtlich ist ¢(0) = #(1) = 1, denn wir bekommen mit den Aufruf auch gleich

das Ergebnis. Dagegen ist t(3) = 3, denn der Aufruf fib 2 zieht die Aufrufe fib 1

und fib 0 nach sich. Fiir fib 3 und fib 4 kann man die Aufrufstruktur durch die

folgenden zwei Bédume nachzeichnen und erhélt #(3) = 5, #(4) = 9.

@@ ﬁ/@@\&

Diese Baume zeigen auch, wie man t(n) rekursiv beschreiben kann, denn der Aufruf

fib n fiithrt zu den Aufrufen fib (n-1) und fib (n-2), d.h.
t(n) =1+tn—1)+t(n—2).

Da diese Rekursion sehr ahnlich zur Fibonacci-Rekursion ist, ist zu vermuten, dass
sich auch t(n) und f(n) stark dhneln. Zum Beweis verwendet man vollsténdige In-
duktion in der verallgemeinerten Variante, d.h. beim Induktionsschritt ist es erlaubt,
nicht nur auf den unmittelbaren Vorganger, sondern auf beliebige kleinere Zahlen
zuriickzugreifen. Fiir den Induktionsanfang wird die folgende Tabelle sehr niitzlich
sein.

n O 12|34 D 6

f(n) | 0| 1 11213 D 8

tn) | 111359 15] 2
Behauptung: t(n) > f(n+ 1) und ¢(n) < f(n+ 3) — 1 fiir alle natiirlichen Zahlen

n.
Den Induktionsanfang fiir n = 0 und n = 1 kann man bei beiden Ungleichungen aus
der Tabelle ablesen.

Sei nun n > 1 und die Behauptung fiir n und alle kleineren Zahlen bewiesen. Wir
zeigen zuerst, dass die linke Ungleichung auch fiir n 4 1 gilt:

tth+1)=1+tn)+tn—1)>1+ f(n+1)+ f(n) > f(n+2)

Dabei wurde die Rekursion fiir £(n + 1), die Induktionsvoraussetzung und die Rekur-
sion fiir f(n + 2) verwendet. Fiir die rechte Ungleichung funktioniert das dhnlich:

tn+1)=1+tn)+tn—1) <1+ f(n+3)—1+f(n+2)—1< f(n+4)—1

Genauere Laufzeitabschatzungen

Mit etwas anspruchsvolleren mathematischen Methoden kann man die folgende ge-
schlossene Formel fiir die Fibonacci-Zahlen herleiten:

p_L 1+v5)" 1 (1-vBY
NV 2 V5 2
Aus dieser Formel kann man sehr gut das exponentielle Wachstum der Fibonacci-
Zahlen und ihr Konvergenzverhalten ablesen. Der zweite Summand kann fiir grofie n
vernachléssigt werden, so dass der Quotient aus zwei aufeinanderfolgenden Fibonac-

cizahlen gegen % geht. Diese Zahl beschreibt bekanntlich den goldenen Schnitt.

Man kann also sagen, dass sich die Laufzeit der Fibonacci-Rekursion (gemessen in
1+\/5)n
2

Funktionsaufrufen) proportional zum Exponentialausdruck (verhalt.

Eine geometrische Demonstration dafiir, dass diese Konvergenz schon fiir relativ
kleine Zahlen einsetzt, findet man in der folgenden Abbildung:

Aus vier Puzzleteilen wird jeweils ein 5 x 13 Dreieck zusammengesetzt, aber im
rechten Dreieck bleibt ein Feld frei. Wie kann man das erklaren?
Beim genaueren Hinsehen oder besser beim Nachrechnen entdeckt man, dass die
Hypotenusen der beiden kleinen Dreiecke verschiedene Anstiege haben und somit
keine Gerade bilden: % = 0,4 und % = 0,375. Unter Beriicksichtigung von 2 =
f3, 3= f1, 5= f5 und 8 = f erhalt man eine geometrische Idee davon, dass sich die
Quotienten f3/fs und fy/ f¢ nur wenig unterscheiden.

Verbesserung der Laufzeit

Wie man sich leicht iiberzeugen kann, liegt der Hauptgrund fiir die schlechte Laufzeit
nicht primar an der Programmiersprache Haskell, sondern an der nichtprimitiven
Form der Rekursion, die fiir jeden Rekursionsaufruf zwei weitere Funktionsaufrufe
nach sich zieht.

Bei der Verwendung einer imperativen Programmiersprache gibt es einen einfachen
Ausweg, ndmlich den Verzicht auf Rekursion und die Zwischenspeicherung aller Fibo-
nacci-Zahlen bis zu der zu berechnenden Zahl.

Ein solches Zwischenspeichern ist bei funktionalen Programmiersprachen nicht méglich,
aber man kann es tiber einen kleinen Trick erreichen. Man verwendet fiir die Ausgabe
einen Datentyp, der mehr als eine Zahl halten kann. Wir werden in den néachsten
Vorlesungen zwei neue Datentypen kennenlernen, die dafiir geeignet sind: Tupel und
Listen.

